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Preface

This is a compilation of the lectures given in 1990-97 in the universities
of Novosibirsk, Freiburg (in Breisgau), Trento and Cardiff. The book gives a
concise account of several, mostly very recent, theorems on the structure of
finite p-groups admitting p-automorphisms with few fixed points. The proofs,
given in full detail, require various powerful methods of studying nilpotent p-
groups; these methods are presented in the manner of a textbook, accessible for
students with only a basic knowledge of linear algebra and group theory. Every
chapter ends with exercises which vary from elementary checks to relevant
results from research papers (but none of them is referred to in the proofs).

By the classical theorems of G. Higman, V. A. Kreknin and A. I. Kostrikin,
a Lie ring is soluble (nilpotent) if it has a fixed-point-free automorphism of
finite (prime) order. (These Lie ring theorems are also included along with
all necessary preliminary material.) Prompted by and based on these Lie ring
results, the main theorems of the book state that a finite p-group is close to
being soluble (nilpotent) in terms of the order of a p-automorphism and the
number of its fixed points. These results can be viewed as general structure
theorems about finite p-groups. They are closely related to the theory of (pro-)
p-groups of maximal class and given coclass and have natural extensions to
locally finite p-groups.

Presenting linear (mostly Lie ring) methods in the theory of nilpotent
groups is another main objective of the book. Of course, the methods are
judged as tools yielding certain results; on the other hand, the results them-
selves can be viewed as an excuse for presenting the methods. The proofs of the
main results involve viewing automorphisms as linear transformations, associ-
ated Lie rings, theory of powerful p-groups, the correspondences of A. I. Mal’cev
and M. Lazard given by the Baker-Hausdorff Formula. Applications of the
Baker—-Hausdorff Formula are rare in the theory of finite p-groups; remark-
ably, the Mal’cev Correspondence is an essential ingredient in the proof of one
of the main results, and the Lazard Correspondence is used to make easier
reductions to Lie rings in the proofs of two others.

During the preparation of this book the author enjoyed the hospitality of
the School of Mathematics of the University of Wales, Cardiff, being a vis-
iting research professor there, and, at earlier stages, of the Department of
Mathematics of Trento University, as a Professore a contratto. The author is
grateful to his colleagues, whose attention and advice helped a lot to improve
the presentation; in particular, the author thanks A.Caranti, O.H. Kegel,
J.C.Lennox, N.Yu.Makarenko, V.D.Mazurov, Yu. A. Medvedev, A.Shalev,
and J. Wiegold.



Introduction

Many problems in group theory arise from the fact that the group operation
may not be commutative: in general ab # ba, for elements a, b of a group. It
is natural to distinguish classes of groups with respect to how close they are
to commutative (abelian) ones. To measure the deviation from commutativity
the commautator of the elements a,b is defined to be [a,b] = a 'b7lab. It is
easy to see that ab = ba if and only if [a,b] = 1 (we use 1 to denote the neutral
element of a group). Now, a group G is abelian if and only if [z,y] = 1 for all
z,y € G (in other words, if the law [z,y] = 1 holds on G).

Iterated commutators give rise to generalizations of abelian groups, other
classes of groups that are less commutative, although, in a way, close to com-

mutative ones. So [...[[z1, 23], z3],... ,zk] is a simple (or left-normed) com-
mutator of weight £ in the elements z,,z2,...,z¢. A group is said to be
nilpotent of nilpotency class < ¢ if [...[[z1,22),23],... ,Zc41] = 1 for any ele-

ments Z,ZT3,... ,Zc41. Another way of taking iterated commutators defines
the class of soluble groups of derived length < d. These are groups satisfy-
ing the law 64(z1,22,... ,254) = 1, where, recursively, 6(z1,22) = [21,22),
and Sp41(z1,Z2,. .. ,Zort1) = [O(Z1,22,. .. ,Tok), 0k(Zory1, Tokbyg,y . o, Torir)].
These generalizations (and many others) can also be defined via existence of
normal series with commutative or central factors.

The more commutative is the group operation, the friendlier seems the
group. For example, the finite abelian groups admit a well-known description.
On the other hand, each area of mathematics has its own problems, so does
the theory of abelian groups (even the theory of finite abelian groups contains,
in a way, a large portion of number theory with its difficult problems). In
fact, many areas of mathematics are studied modulo others, more transparent
from some viewpoint. Having commutativity in mind, we can build up the
following kind of series of classes of finite groups, in the order of decreasing
commutativity of the group operation:

< VA VAVAVAN
T - :—% SRRNN
- ~ ///

abelian > nilpotent > soluble > ... > simple

(Extending this picture to arbitrary infinite groups, we could place polynilpo-
tent and polycyclic between nilpotent and soluble, or insert other generaliza-
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tions of solubility to the right of soluble; free groups, which do not satisfy any
non-trivial laws, could be placed somewhere on the right, etc.)

We shall be dealing mostly with nilpotent groups in these lectures. The
picture helps to describe a vague feeling about the place which the class of
nilpotent groups occupies in finite group theory. Abelian groups seem to be the
most transparent, admitting the well-known classification. The (non-abelian)
simple groups are, probably, the most non-commutative finite groups: they
have no proper normal subgroups, in contrast with abelian groups, all of whose
subgroups are normal, or with nilpotent or soluble groups, which have plenty
of normal subgroups. Nevertheless, the finite simple groups are also being
classified, although this classification is very difficult, occupies thousands of
pages of research articles, and is one of the main achievements of mathematics
in this century. The finite simple groups seem to have very rigid structure, like
crystals; they can be reconstructed from a small fragment (the centralizer of an
involution, say). The above remark about studying modulo something is fully
applied here: a typical result on non-soluble finite groups is a statement about
the factor-group over the largest normal soluble subgroup, or a statement
characterizing the (non-abelian) chief factors of a group. The structure of
soluble groups appears in certain layers, nilpotent or abelian sections. A typical
result about finite soluble groups is bounding the length of the shortest normal
series with nilpotent factors, while the structure of these nilpotent factors
remains unknown, but is considered good enough, so to say. The difference
of soluble finite groups from simple ones seems similar to the difference of
graphite from diamond.

The class of nilpotent groups is more like a marsh, a swamp, because their
structure appears to be rather amorphous and because of their notorious di-
versity. There are actually special works showing that there are lots and lots
of nilpotent groups and that a classification of nilpotent groups is, in a way,
impossible, This is why it is important to have certain beacon lights, marks,
showing the ways in this swamp, giving an idea where to work and what kind
of results are good in the theory of nilpotent groups.

From the above “more or less commutativity” viewpoint, it is clear that
a result in group theory is the better, the more commutativity it yields at
the output. For example, one of the “beacon lights” is the Burnside Problem,
which can be viewed as asking whether the identity 2™ = 1 implies some kind
of commutativity of the group operation.

Example. Suppose that z2 = 1 for every element z in a group G. Then
G is abelian.

Proof. For any two elements a,b € G we have abab = 1. Multiplying on
the left by a and then by b we get baabab = ba. On the left-hand side we
have baabab = b(a?)bab = b%ab = ab. As a result, ab = ba for any a and b, as
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required.

For sufficiently large exponents, there exist “bad” groups that are very
far from being commutative (groups of S.I. Adyan and P.S.Novikov and of
A.Yu. Ol'shanskii). However, if we restrict attention to finite groups only
(which means considering the Restricted Burnside Problem), then the re-
sults are positive. Using the W.Magnus— A, N, Sanov reduction to Lie al-
gebras, A.I Kostrikin proved that a d-generator finite group of prime expo-
nent p is nilpotent of class bounded by a function depending on p and d.
(Yu. P. Razmyslov showed that the nilpotency class can increase unboundedly
with the growth of d, for p > 5.) E. 1. Zelmanov proved that a d-generator finite
group of a prime-power exponent p* is nilpotent of class bounded by a function
of p* and d. Together with the Reduction Theorem of P. Hall and G. Higman,
this completes the positive solution of the Restricted Burnside Problem for all
exponents in the class of soluble groups and, modulo the classification of the
finite simple groups, for all finite groups: for every pair of natural numbers d
and n, there exist only finitely many d-generator finite groups of exponent n.

Apart from groups of given exponent, there are other ways of choosing
interesting classes of nilpotent groups. For example, N. Blackburn introduced
p-groups of maximal class, that is, groups of order p" and nilpotency class
n — 1 (which is maximal possible for this order). These groups became a
starting point for the theory of p-groups and pro-p-groups of given coclass
(S. Donkin, C.R.Leedham-Green, A. Mann, S. McKay, M. Newman, W, Ples-
ken, A.Shalev, E.I. Zelmanov and others). Another interesting generalization
are the so-called thin p-groups (and pro-p-groups) where substantial progress
was recently made by R.Brandl, A.Caranti, S.Mattarei, M. Newman and
C. Scoppola.

In these lectures we shall consider nilpotent p-groups admitting certain p-
automorphisms. A bijection ¢ of a group G onto itself is an automorphism if it
preserves the group operation: (zy)¥ = z%y¥ for all z,y € G. For any g € G,
one can form the inner automorphism 7, : £ — g~'zg. It is easy to see that 7,
is the identity mapping of G if and only if g commutes with all elements of G.
So, modulo commutative groups, studying a group is equivalent to the study
of its (inner) automorphisms. Conversely, all automorphisms of a group can be
regarded as inner automorphisms of a larger group. Thus, studying automor-
phisms of groups is, in a way, equivalent to studying groups themselves; this
approach sometimes provides certain advantages. For example, the theory of
p-groups of maximal class is virtually equivalent to that of p-groups admitting
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an automorphism of order p with exactly p fixed points, and a large portion of
the theory of p-groups of given coclass amounts to that of p-groups admitting
an automorphism of order p* with exactly p fixed points.

Again, results on automorphisms may be considered the better, the more
commutativity they yield.

Example. Suppose that ¢ is an automorphism of a finite group G such
that ¢ = 1 and 1 is the only element of G left fixed by ¢ (in other words,
z¥ # z whenever z # 1). Then G is abelian.

Proof. We show first that G = {g71¢¥ | g € G}. Since G is finite, it is
sufficient to show that the mapping g — g~ 1g* is injective. If g7 g? = g; g%,
then gogi! = g5(g¥)™! = (g297")%, whence gogi' = 1 by hypothesis, that
is, g2 = ¢1. Now for each h € G we have h = g~ 1g” for some g € G;
then hh¢ = g~1g*(g71g*)* = g7'¢*(¢*) "¢ = g7'g = 1, since > = 1. In
other words, h¥* = h™! for every h € G. Finally, for any a,b € G, we have
ba = (a”1671)% = (a71)?(b71)¢ = ab. a

An automorphism that fixes only the identity element of a group is called
regular. One can prove that if a finite group admits a regular automorphism of
order 3, then it is nilpotent of class at most 2. By a theorem of J. G. Thompson,
1959, every finite group with a regular automorphism of prime order is nilpo-
tent. G. Higman in 1957 proved that the nilpotency class of a nilpotent group
with a regular automorphism of prime order p is bounded by a function A(p),
depending on p only. (V.A.Kreknin and A.I Kostrikin in 1963 found a new
proof giving an explicit upper bound for this Higman’s function.) The theo-
rem of J. G. Thompson is an example of a result modulo the theory of nilpotent
groups, while the theorem of G. Higman deals with nilpotent groups from the
outset.

[.'E],. .. ,zh(p)+1] =1

| A

In fact, the works of G. Higman, V. A. Kreknin and A.I. Kostrikin are es-
sentially about Lie rings with regular automorphisms: the group-theoretic
corollaries are rather straightforward consequences. V. A. Kreknin in 1963 also
proved that a Lie ring with a regular automorphism of arbitrary finite order n
is soluble, of derived length bounded in terms of n. (However, it is still an open
problem to obtain an analogous result for nilpotent groups.) These Lie ring re-
sults turned out to be useful in the study of p-automorphisms of finite p-groups
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with few fixed points (“almost regular” ones), although a p-automorphism of
a finite p-group can never be regular.

The results that we are aiming at in these lectures are about the structure
of a finite p-group P admitting a p-automorphism ¢ of order p* with exactly
p™ fixed points. First consider the case where n = 1, that is, |¢| = p.

e Then the derived length of P is (p,m)-bounded, that is, bounded in terms
of p and m only [J. Alperin, 1962].

e Moreover, in a match to G. Higman’s Theorem, P contains a subgroup of
(p, m)-bounded index which is nilpotent of p-bounded class [E. I. Khukhro,
1985].

e In another direction, prompted by the results on p-groups of maximal class,
P also contains a subgroup of (p, m)-bounded index which is nilpotent of
m-bounded class [Yu. A. Medvedev, 1994a,b].

Now consider the general situation, with |¢| = p™.

e Then the derived length of P is bounded in terms of p, n and m [A. Shalev,
1993a).

e Moreover, in a match to Kreknin’s Theorem, P contains a subgroup of
(p,n,m)-bounded index which is soluble of p™-bounded derived length
[E. L. Khukhro, 1993a).

e In the extreme case of m = 1, where the number of fixed points is p,
minimal possible, P contains a subgroup of (p,n)-bounded index which is
nilpotent of class 2 (for |¢| = p, [R.Shepherd, 1971], and [C. R. Leedham-
Green and S. McKay, 1976); for |¢| = p", [S. McKay, 1987], and [I. Kiming,
1988)).

(Most of the above results can be extended to certain classes of infinite
groups, but we do not discuss these generalizations in the book.)

The “modular” case, where a p-automorphism acts on a p-group, turned
out to be easier than the “ordinary” one, where the order of the automor-
phism is coprime to the order of the group. It is still an open problem to
obtain an analogue of Kreknin’s Theorem for nilpotent groups with regular
automorphisms of finite order. The only known cases are those of prime or-
der [G.Higman, 1957] and order four [L.G.Kovics, 1961]. There is also a
generalization of Higman’s Theorem for nilpotent groups with an almost reg-
ular automorphism of prime order ([E. I Khukhro, 1990] and [Yu. Medvedev,
1994c]); see also the book [E.I. Khukhro, 1993b].

Applications of Lie rings and other linear tools are based on the fact that
nilpotent groups are close to commutative ones. Abelian subgroups and sec-
tions are similar to vector spaces (or modules), and the action of automor-
phisms on such sections is similar to linear transformations. The group com-
mutators can be used to define the structure of a Lie ring on the direct sum of
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the additively written factors of the lower central series of a group, the so-called
associated Lie ring. Other ways of constructing a Lie ring from a nilpotent
group, the correspondences of A.I. Mal’cev and M. Lazard, are based on the
Baker-Hausdorff Formula. Under these correspondences, the Lie ring reflects
the properties of the group in a much better way, but this technique cannot
be applied to any nilpotent group.

The Lie ring method of solving group-theoretic problems consists of three
major steps. First, the problem must be translated into a corresponding prob-
lem about Lie rings constructed from the groups. Then the Lie ring problem
is solved. The results on Lie rings must then be translated back, into required
conclusions about groups. The advantage lies in the fact that it is usually
easier to deal with Lie rings as more linear objects; for example, one can ex-
tend the ground ring, which gives rise to the analogues of eigenspaces with
respect to the automorphism, etc. On the other hand, both crossings over,
from groups to Lie rings and back, may be quite non-trivial. For example, the
number of fixed points of an automorphism may well be much greater on the
associated Lie ring than on the group. Another example: if the Lie ring result
gives a subring of small nilpotency class and small index, say, this does not
immediately give the required subgroup in the group, since there is no good
correspondence between subrings of the associated Lie ring and subgroups of
the group (such kind of difficulty had to be overcome in the theorem on almost
regular coprime automorphism in [E. I. Khukhro, 1990]). Thus, reductions to
Lie rings and recovering information about the group from the Lie ring results
may sometimes require even more effort than the Lie ring theorems themselves.

The difficulty in proving an analogue of Kreknin’s Theorem for nilpotent
groups with a regular automorphism of composite order lies in the fact that
the derived length of the associated Lie ring may be smaller than that of the
group. What makes the “modular” case that we are dealing with in this book
much more friendly is the bounds for the ranks of all abelian sections that
follow from the restrictions on the number of fixed points. This reduces the
proofs to powerful p-groups whose nice linear properties make it easier to apply
the Lie ring methods.

Lie rings are used in the book not only for proving the main results, but
also for deriving many of the standard “linear” properties of nilpotent groups.
Naturally, quite a lot of preliminary material on Lie rings is included.

We tried to make the book closer to a textbook, really accessible to stu-
dents with only undergraduate knowledge in algebra and group theory; efforts
were made to ensure that there are no stumbling-blocks disguised by the words
“obvious” or “as is well-known”. The relatively short chapters follow the pat-
tern of the lecture course. The chapters on methods alternate with chapters
on applications, so that the reader could see, as soon as possible, the results
that can be achieved by these methods. Exercises included in every chapter
vary from elementary ones to relevant results from research papers (but none
of them is referred to in the proofs).
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Chapter 1 contains preliminaries on groups, rings and modules, and on
varieties of algebraic systems. Most of this material may well be not more than
a reminder, but we note that varietal arguments, often in terms of groups or
Lie rings with additional operations, are essential in the subsequent chapters.

Because of the outstanding role of automorphisms in the book, we devoted
a special chapter, Chapter 2, to preliminary material on automorphisms, con-
taining a few folklore elementary lemmas on fixed points.

Chapter 3 combines material on nilpotent and soluble groups. Besides
definitions and basic properties, it contains some criteria for soluble groups to
be nilpotent and a criterion for a variety to be soluble.

In Chapter 4 elementary properties of finite p-groups are proved, as well
as a theorem of P. Hall on the orders of the lower central factors of a normal
subgroup.

Chapter 5 introduces Lie rings. A section on soluble and nilpotent Lie rings
collects the analogues of group-theoretic results from Chapter 3, including a
criterion for a variety to be soluble, which is used in Chapter 7 for proving
Kreknin’s Theorem. Then free Lie rings are constructed within free associa-
tive algebras. The main use of this construction is in Chapters 9 and 10 on
the Baker-Hausdorff Formula and the Mal’cev Correspondence; the only fact
needed earlier is that free Lie rings are multihomogeneous with respect to free
generators.

Chapter 6 introduces one of our main tools, the associated Lie rings; in
§6.3 they are used to derive several properties of nilpotent groups.

Theorems of G. Higman, V. A. Kreknin and A.I. Kostrikin on regular auto-
morphisms of Lie rings are proved in Chapter 7 in generalized combinatorial
form: first for (Z/nZ)-graded Lie rings, then for free Lie rings, and finally for
Lie rings with automorphisms. Although it is only these combinatorial results
that are used later, we could not help deriving the consequences for Lie rings
and finite nilpotent groups with regular automorphisms.

Technique accumulated to this point enables us to prove in Chapter 8 the
first of the main results, an analogue of G. Higman’s Theorem for p-groups
with an almost regular automorphism of order p.

In Chapter 9 free nilpotent Q-powered (torsion-free divisible) groups and
nilpotent Lie Q-algebras are constructed within associative algebras. We prove
the basic property of the Baker-Hausdorff Formula, which links the group and
the Lie ring operations.

In Chapter 10 the Baker-Hausdorff Formula is used to establish the Mal’cev
Correspondence between nilpotent Q-powered groups and nilpotent Lie Q-
algebras. There is also a similar correspondence of M. Lazard for nilpotent
p-groups of class < p — 1. Applications of the Baker-Hausdorff Formula are
rare in the theory of finite p-groups; remarkably, they are featured in the proofs
of the rest of the main results. In Chapter 12 the Mal’cev Correspondence is
substantially used to prove the analogue of Kreknin’s Theorem for finite p-
groups with an almost regular automorphism of order p”, and in Chapters 13
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and 14 the Lazard Correspondence makes it much easier to perform reductions
to Lie rings.

Another important method used in Chapters 12, 13 and 14 is the Lubotzky-
Mann theory of powerful p-groups, which is developed in Chapter 11. Every p-
group of sectional rank r contains a powerful subgroup of (p, r)-bounded index,
which is the “more linear part” of the group. So-called uniformly powerful p-
groups enjoy even more linear properties similar to those of homocyclic abelian
groups. Bounds for the number of fixed points of a p-automorphism imply
bounds for the ranks; this is why powerful p-groups appear naturally in the
theory of p-groups with almost regular p-automorphisms.

We already mentioned that Chapter 12 contains an analogue of Kreknin’s
Theorem for finite p-groups with an almost regular automorphism of order p*,
and that the Mal’cev Correspondence is used in the proof. Another ingredient
of the proof is calculations in powerful p-groups, using an important Inter-
changing Lemma of A.Shalev. Kreknin’s Theorem is used twice. First we
apply it to the associated Lie ring of a powerful p-group, which already leads
to a “weak” bound for the derived length depending on both the number of
fixed points and the order of the automorphism. Then Kreknin’s Theorem
is applied via the Mal’cev Correspondence to a free nilpotent group with an
automorphism of finite order. The general result obtained allows us to find
a required subgroup of bounded index with a “strong” bound for its derived
length, depending only on p", the order of the automorphism,

Chapter 13 deals with the extreme case where a finite p-group P admits a
p-automorphism ¢ with just p fixed points, the least possible number. Then
the result is extremely strong: P has a subgroup of bounded index which
is nilpotent of class < 2 (even abelian for p = 2). We give a proof which
is different from the original proofs of C.R.Leedham-Green, S. McKay and
R. Shepherd (for || = p) and S. McKay and I. Kiming (for || = p"). Although
with possibly worse bounds for the index of the subgroup, our proof is more
Lie ring oriented, making use of Higman’s and Kreknin’s Theorems, theory
of powerful p-groups, and the Lazard Correspondence. After reduction to Lie
rings, we prove independently an analogous theorem on Lie rings which is
interesting in its own right. There we adopt the approach of Yu. Medvedev,
defining a new “lifted” Lie ring multiplication. Anticipated in the works of
A.Shalev and E.I. Zelmanov on p-groups and pro-p-groups of given coclass,
Yu. Medvedev’s construction is remarkably transparent and elementary.

In Chapter 14 we prove that if a finite p-group P admits an automorphism
of order p with p™ fixed points, then P has a subgroup of (p, m)-bounded index
which is nilpotent of m-bounded class. Recall that in Chapter 8 we prove that
P has a subgroup of bounded index which has p-bounded nilpotency class.
Neither of these results follows from the other; which conclusion is better
depends on which of the parameters p and m is “much less” than the other.
The proof is quickly reduced to Lie rings via the Lazard Correspondence.
This reduction to Lie rings based on the result of Chapter 8 is easier than in
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Chapter 13, since here we are not constrained by the requirement to obtain such
a strong bound for the nilpotency class as 2. In fact, the bulk of Chapter 14
is an independent proof of the analogous Lie ring theorem (of Yu. Medvedev).
Much of the technique developed in Chapter 13 is used there, including the
new lifted Lie products.

The book [E.I. Khukhro, 1993b] also contains the theorems from Chap-
ters 8 and 12, but in a more condensed form. In the present book the proofs
are rewritten (inflated) to make them more accessible for beginners, and all of
the background material is included. (Among other topics on automorphisms
of nilpotent groups in [E.I. Khukhro, 1993b] are splitting p-automorphisms
of finite p-groups with applications to the Hughes problem, almost regular
coprime automorphisms of nilpotent groups and Lie rings, and some general-
izations of the Restricted Burnside Problem to varieties of operator groups.)

Besides the research papers mentioned in the book, we included several gen-
eral references in the Bibliography; many of the textbooks may be indicated
as our sources, especially for the preliminary chapters. The survey [A. Shalev,
1995] on finite p-groups reflects Lie ring methods, almost regular automor-
phisms, and applications in the theory of pro-p-groups. Almost regular au-
tomorphisms in a broader context of locally finite groups were also surveyed
in [B. Hartley, 1987]. Linear methods in the theory of (residually) nilpotent
groups and pro-p-groups are the subject of the survey [E. I. Zelmanov, 1995].






Chapter 1

Preliminaries

Here we record some basic definitions and elementary results about group,
rings, and varieties of algebraic systems. We assume a basic knowledge in
undergraduate algebra. In particular, in group theory, the reader is supposed
to be familiar with definitions and basic properties of subgroups, cosets, cyclic
subgroups, direct products, the structure of finite abelian groups, normal sub-
groups, the Homomorphism Theorems. The Sylow Theorems may be referred
to occasionally, but they are not used in the proofs of the main results of the
book, which are all about finite p-groups. Some familiarity with rings and
modules is assumed, although many of the definitions are briefly reproduced.

We shall often use exponent notation for images under mappings, that is,
a? or A¥ for ¢p(a) or p(A) respectively, and sometimes also the right operator
notation, a¢ for p(a), say. The identity mapping of a set M will be denoted by
1ps. Standard notation N, Z, @, R, C is fixed for the sets of natural numbers,
integers, rational, real and complex numbers, respectively. We shall say that
a value is (a, b)-bounded, say, if there is a function depending only on a and
b, such that the value does not exceed this function.

§1.1. Groups

Some basic definitions. The sets Z, Q, R, C are groups with respect
to addition. The set Z/nZ of residues modulo n is a group with respect to
addition mod n. Every vector space is a group with respect to addition. The
set Spr of all bijections of a set M onto M is a group with respect to the
composition of mappings, the identity mapping 1as being the neutral element
and the inverse mapping being the inverse element. When M is finite of order
n, the notation S, is often used; S, is called the symmetric group on n letters.

The set of all bijective linear mappings of a vector space V over a field k
is a subgroup of Sy denoted by GL(V). The set GL,(k) of all non-degenerate
n X n matrices over k is a group with respect to matrix multiplication. If n
is the dimension of V, then fixing a basis of V, we associate a matrix to each
linear transformation of V. This correspondence is an isomorphism of GL(V)
and GL,(k).

We use 1 to denote both the neutral element (identity) of a group and the
trivial subgroup consisting of the neutral element only. To signify that H is a
subgroup of G, we write H < G or G > H; strict inequality H < G means
that H < G and H # G, that is, H is a proper subgroup of G. Saying that
a subset or a subgroup is minimal or mazimal with respect to some property,
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we shall mean minimal or maximal with respect to inclusion.

A (sub)group generated by a subset M is the minimal subgroup containing
M, denoted by (M); it is unique since it equals the intersection of all subgroups
containing M. We know that (M) consists of all products m}* - - - m¢, where
m; € M and ¢; = £1. Note that if M C H < G, then (M) < H. Usually,
braces are omitted within the angle brackets, so that (a | P(a)) = ({a | P(a)});
in a similar way, (4;, 4s,...) = (A1 U AU...).

The cardinality of a set M is denoted by |M|. The index of a subgroup
H < @G is denoted by |G : H|. Recall a useful inequality

|G: HNK|<L|G:H| |G: K| (L.1)

for the indices of subgroups. It follows that the intersection of n subgroups of
index at most m has (m,n)-bounded index (less than or equal to m").

An element 29 = g~ 'zg is the conjugate of z under g. Note that (a*)° = a
and (ab)® = a°b° for any elements a, b, ¢ in a group. For any subset M, a similar
notation is used: M9 = g7'Mg = {g7'mg | m € M}. A subgroup H < G is
normal, denoted by H < G, if HY = H & Hg = gH for every g € G. The
factor-group G/N of a group G by a normal subgroup N is the set of cosets
{Ng | ¢ € G} with multiplication Ng - Nh = Ngh; this operation is well-
defined precisely because N <I G. The normal closure (S€) of a subset S in a
group G is the minimal normal subgroup of G containing S, the intersection
of all normal subgroups containing S; clearly, (S¢) = (s | s € S, g € G). For
any subset S of a group G and a subgroup H < G, the set Ny(S)={g € H |
89 = S} is a subgroup called the normalizer of S in H. The subset S is said
to be K-invariant if K < Ng(S).

be

Lemma 1.2. A subgroup H < G is contained in the normalizer Ng(S) of
a subset S C G if and only if S* C S for every h € H.

Proof. Indeed, $* C 8§ = S = (§"')* C S* for every h € H, plus
S* C S by the hypothesis; hence S* = S for every h € H. (If S is finite, the
result follows immediately from the fact that |S| = |S*|.) a

For a subgroup H < G and a subset S C G, the set Cy(S) = {9 € H |
sg = gs forall s € S} is a subgroup called the centralizer of S in H. For a
one-element S = {s} we simply write Cg(s).

Lemma 1.3. For subgroups K, H, L, M,N in a group G
(a) K < Cg(H) if and only if H < Cg(K),
(b) if both L and M are N-invariant, then Cp(M) and Ny (M) are N-
invariant too.
Proof. (a) K < Cg(H) ©@ kh=hkforall he H, k€ K & H < Cg(K).
(b) For any ¢ € C(M), m € M and n € N we have ¢"m = (cm™ )" =
(m™ 7 ¢)* = mc* since m™ € M, so C (M) C Cr(M); hence CL(M) is
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N-invariant by Lemma 1.2. For any v € N (M) and n € N we have M*" =
(M™)" = (M®)" = M™ = M, so Ny(M)" C Ni(M); hence Cr(M) is N-
invariant by Lemma 1.2. g

The centre of a group G is Z(G) = Co(G) = {2 € G | zg = gz forallg €
G}. Clearly, Z(QG) is the intersection of the centralizers of all elements of G.

For any two subsets M and N of a group the product MN is the set
{mn | m € M, n € N}. If M, say, consists of one element, M = {m}, then
we simply write mN, which agrees with the usual notation for cosets if N is a
subgroup. If H is a subgroup and N is a normal subgroup of a group G, then
the set HN = NH is also a subgroup of G, so that (H, N) = HN; if both H
and N are normal subgroups, then HN is a normal subgroup too.

The (external) direct product A x B of two groups A, B is the set of pairs
(a,b), a € A, b € B, with the component-wise operation (ay,b1) - (az,b)
(a1a2,b1b2), so that (1,1) is the neutral element of A x B and (a,b)”! =
(a™',b7). Then A and B can be identified with the normal subgroups A =
{(a,1) | a € A} and B = {(1,b) | b € B} respectively, for which AN B =1
and AB = A x B. Conversely, if a group G = M N is a product of two normal
subgroups M, N with trivial intersection M NN =1 (internal direct product),
then G is isomorphic to the direct product M x N, the isomorphism given by
mn — (m,n). Thus, the notions of internal and external direct products are
equivalent.

Example 1.4. Suppose that M and N are normal subgroups of a group G.
Then MN/(MNN)= M x N, where M = M/(MNN)and N = N/(MNN).
Indeed, MN/(M N N) = MN, both M and N are normal subgroups, and
MnN = 1lsincem(MNN)=n(MNN) for m € M, n € N implies that
m € N, say.

The Cartesian product Crie; A; of a family of groups {A; | ¢ € I} is the
set of all functions f : I — U;cr A such that f(i) € A;; this is a group with
respect to the coordinate-wise operation (fg)(:) = f(¢)g(¢). The set of those
functions f that have non-trivial values only on a finite subset of / (depending
on f) is the direct product Drics Ai, a subgroup of Crier Ai. For a finite set
of groups both definitions coincide and the resulting group is isomorphic to
Ay X -+- x Ay (with arbitrary order of parentheses). The equivalent definition
of the internal direct product is that G = (A; |1 €I}, A; A G forall¢ € I,
and A;N(A;|i#7)=1.

The order of an element a of a group denoted by |a| is the least positive
integer k such that a* = 1, or oo if no such k exists. It is easy to see that
|a| = |{a)|. The ezponent of a group G is the least n € N such that z" =1
for all £ € G (or oo if such n does not exist). Clearly, the exponent is the
least common multiple of the orders of all elements of G. We denote by G*
the subgroup of a group G generated by all nth powers of the elements of G;
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clearly, G is the smallest normal subgroup such that the factor-group is of
exponent dividing n. A group is torsion-free if it has no non-trivial elements of
finite order. Let p be a prime number. An element of a group is a p-element,
if its order is a power of p. A group G is a p-group, if it consists of p-elements.
For a p-group G, we define the subgroups Q;(G) = <:1: €G |z = 1>. A
maximal (with respect to inclusion) p-subgroup is a Sylow p-subgroup. The
Sylow Theorems state that in a finite group of order p*n, where p { n, all
Sylow p-subgroups have order p* (so that every p-subgroup is contained in a
subgroup of order p*), and all Sylow p-subgroups are conjugate.

A section M/N of a group G is a factor-group of any of its subgroups:
M < G and N d M; a section is said to be normal if both M and N are
normal in G. Any chain of nested subgroups

1=G0£G1£G2SSG.”=G

is a series of G of length n. If all of the G; are normal in G, the series is
normal; if each G; is a normal subgroup of G;;,, the series is subnormal. The
sections Gi41/G; of a subnormal series are the factors of the series. (Of course,
one can number the terms of a series in any other way.)

Abelian groups. Recall that a group is abelian or commutative if ab = ba
for any two elements a and b. Abelian groups are often written additively,
using + for the operation and 0 for the neutral element (and for the trivial
subgroup); but we still denote factor-groups as M/N, rather than M — N. For
example, the additive group of integers Z is generated by 1, which is not the
neutral element here. We denote by ka the kth power of an element a, speak
about direct sums of abelian groups instead of direct products, etc.

If A is an abelian group and n € N, then nA = {na | a € A} is a subgroup
of A. If n is coprime to the exponent of a finite abelian group A, then ¢ — na
is an injective mapping, since na = nb => n(a—b)= 0= a—b =0, and hence
nA = A.

Suppose that p,...,pn are all distinct prime divisors of the order of a
finite abelian group A. It is clear that all p;-elements in A form a subgroup
A,, which is the unique Sylow p;-subgroup of A. Suppose that, for an element
a € A, we have |a| = m = p¥ ... pk» K > 0 (only the p; are involved by
Lagrange’s Theorem). Put m; = m/p;*; the greatest common divisor of all of
the m; is 1, and hence there exist integers u; such that 1 = uymi+- - +u,m,.
It follows that a = la = uymia+- - - + u,mna, where p?"m,-a = ma = 0 so that
m;a € Ap, for each i. Therefore, A = A,, +---+ Ap,. Since Ay, N (Ap, +--- +
Ay +---+ A,,) = 0 for each ¢ (the order of an element in the intersection can
be only 1), the sum is direct: A= A, & --- ® Ap,.

The above decomposition is a part of the Structure Theorem for finite
(finitely generated) abelian groups. This theorem takes especially simple form
for finite abelian p-groups: every such a group is a direct sum of cyclic groups
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of orders p*1,... ,p** > p and the set {ki,... ,k,} is an invariant, that is, does
not depend on the choice of the summands (which are in no way unique).

A finite abelian group has rankn, if it is a direct sum of n cyclic groups, and
n is minimal possible. For a finite p-group P, therank r is equal to the number
of (non-trivial) cyclic subgroups in the direct sum P = (a;)®- - -@®{a,) and does
not depend on such decomposition, as follows from the Structure Theorem.

An abelian group E of prime exponent p is called elementary abelian. In
the additive notation, E can be viewed as a vector space over F,, the field
of p elements (of residues mod p, say). The addition of vectors is the group
operation, and multiplying a vector g by a residue ¢ is taking the ith power
ig of the element g (this is well-defined since pg = 0); the axioms of a vector
space over IF, are easily checked: for example, we have i(z + y) = iz + iy for
z,y € E, i € Fp, since the group is abelian. One can say that the theory
of elementary abelian groups of exponent p is “categorically equivalent” to
the theory of vector spaces over F,: every statement about E as a group of
exponent p can be translated into the language of a vector space over F, and
vice versa. The rank of E as a group is exactly the dimension of E as a space.
The automorphism group Aut E coincides with the group of non-degenerate
linear transformations over F,, and so on.

Suppose that P = (a1)®- - -@ (a,) is an abelian p-group with |a;| = p& > p;
then Q,(P) = <p"1‘1a1> &P <p""1a,>. The number of cyclic summands, r,
is equal to the rank of €,(P), which is the dimension of Q,(P), an invariant.
Thus, the number of cyclic summands for P is always equal to the rank of P
and to the rank of {,(P). Considering the ranks of €4,/ is a way to prove
the uniqueness part of the Structure Theorem (Exercise 1.18). We also have
pP = (pa)) ®- - - @ (pa,) and P/pP is an elementary abelian p-group of rank r.

A direct sum of several cyclic groups of equal order p" is a homocyclic group
of exponent p™. Such groups have quite a homogeneous structure.

Lemma 1.5. Suppose that A is a homocyclic group of ezponent p™ and
rank r. Then

(a) p'A=Qui(A) for all i < n;

(b) ifpla€p’Afori<j<n,thenaep A

(c) the mapping x — px induces isomorphisms of the sections p'A/p*' A,
t=0,1,... ,n—1,;

(d) if B > p’ A for a subgroup B < A, then B > p'—* A unless j > n;

(e) if p*A > B, then Q(A/B) is a homocyclic group of exponent p* and
rank r;

(f) if A> B > p*A, then B/p"~*B is a homocyclic group of exponent

p"* and rank r.

Proof. Let A = (a1) ® --- & (a,) where |a;| = p" for all i. Every element
a € A has a unique representation a = Y_i_, u;a; where a; € Z/p"Z. It follows
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that a € p°A & p°|u; for all 4, and p*| |a| & p™*|u; for all i. Hence (a) and
(b) follow. It also follows that |p'A| = p"™*) and hence |p'A/p*' A| = p" for
all i < n — 1. Since the mapping £ — pz obviously induces a homomorphism
of p'~1A/p'A onto p'A/p"*' A, this is actually an isomorphism.

To prove (d), choose k such that B > p*A, but B # p*~'A. The mapping
z — pz induces an isomorphism of p*~! A/p*A onto p*A/p**' A which maps
BNp* 1A onto pBNp*A; hence p'B # p*"'*'Aaslongas k—1+i <n. If
p'B > p’ A for j < n, it follows that j > k + 4 so that B > p* A > pi~7 A.

(e) The factor-group A/B = (g1) @ - - - ® (g ) is a direct sum of r cyclic p-
groups of orders |g;| = p* > p*, since A/p*A is a homomorphic image of A/B.
Hence

%(A/B) = (") & @ (P *g,)

is a homocyclic group of exponent p* and rank r.
(f) We have B > (p*a1) @ --- @ (p*a, ); and hence B = (g1) & - & (v
is a direct sum of r cyclic groups of order > p"~* each. Then B/p" *B =

(g1)/<Pn_kgl> DB (gr)/<p"‘kgr> is a homocyclic group of exponent p"~*
and rank r. a

Lemma 1.6. (a) Suppose that B is a homocyclic subgroup of exponent p™
of an abelian group A of the same exponent p*. Then A = B @ C for some
C <A

(b) Suppose that U is a homocyclic abelian group of exponent p™ and U/ B is
a homocyclic group of the same exponent p* for some B < U. Then U = BoC
for some C < U,

(c) Suppose that U is a homocyclic abelian group of ezponent p* and U =
Ve W;thenV and U/V = W are homocyclic groups of exponent p™.

Proof. (a) Induction on |A|. Suppose that 0,(A) £ B; then there is
¢ € A\ B such that pc = 0 and hence BN (c) = 0. Then the image B of B
in A = A/(c) is isomorphic to B. By the induction hypothesis A = B&® C
for some C < A. Let C be the full preimage of C; we claim that A= B& C.
Indeed, A = B+ C and BNC < BN {(c) = 0. It remains to prove that if
(A) < B, then B = A. We use induction on k to prove that if p*a = 0, then
a € B; for k = 1 this is true by the assumption Q,(A) < B. For k > 1 we have
p*"la € 4 (A) < B; since B is homocyclic of the same exponent as A, there
is b € B such that p*~'b = p*~la, whence p*~!(b — a) = 0. By the induction
hypothesis b — a € B, whence a € B.

(b) Let U/B = (@) & --- ® (ax) with |a;| = p” for all ;. Choose some
preimages a; of the @;; then |a;| = p™ for all ¢ since p” is the exponent of U.
We claim that U = B & C where C = (1) + --- + (az). Since U = B+ C,
we need only to show that BNC = 0. If ©%_, kia; € B, then 5, kia; = 0,
whence p"|k; for all 4, since U/B is homocyclic of exponent p®. But then
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% | kia; = 0 too.

(c) Both V and W are direct sums of cyclic p-groups; together, these
decompositions form a decomposition of U = V @& W into the direct sum of
cyclic groups. Since the set of the orders of the summands is unique by the
Structure Theorem, both V and W must be homocyclic of exponent p*. O

The assertion (a) can be used to prove the existence part of the Structure
Theorem for abelian p-groups.

Homomorphisms and automorphisms. Recall that a mapping ¢ of
a group G into another group is a homomorphism if ¢ preserves the group
operation: (ab)? = a¥b® (it follows that (a™')® = (a®)~! and 1% = 1). The set
Keryp = {g € G| g¥ = 1} is always a normal subgroup of G, the kernel of .
If N 4G, then ¢ — gN is the so-called natural homomorphism of G onto
the factor-group G/N. Congruences mod N denote equalities of the images
in G/N of elements or subsets:

=b(modN) & aN=bN; A=B(modN) & AN = BN.

Let ¢ be a homomorphism of a group G with kernel N = Ker¢. The
Homomorphism Theorems state that

® ¢ is a composition of the natural homomorphism of G onto G/N and
some isomorphism of G/N onto G¥;

e H — HY is a bijection of the set of all subgroups containing N and the
set of subgroups of G¥, and N < H 4G & H¥ 4 G%;

e for any subgroup K < G the full preimage of K¢ is KN; if L < K, then
L? 4 K¢ and K¢/L¢ = K/L(N N K); in particular, K¥ = K/(K N N),
and if N < M Q L, then LY/M¥ = L/M.

We now prove a very useful though simple lemma.

Lemma 1.7. If ¢ is a homomorphism of a group G, then (M)%¥ = (M¥)
for any subset M C G.

Proof. We know that (M) = {m{' ---m% | m; € M, €; = £1}. Since ¢ is
a homomorphism, (m{* - - -mZ*)? = (m{)* -- - (m¥)** for every such a product.
Hence (M)? coincides with the set of the products (m{)* - -- (m¢)* which is
exactly (M¥). a

A homomorphism of a group into itself is an endomorphism. A subgroup
H < G issaid to be fully invariant, if H¥ < H for every endomorphism ¥ of G.
Lemma 1.7 implies that Q,(P) is a fully invariant subgroup in any p-group P,
since elements of order p are mapped to elements of order dividing p by any
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endomorphism. Similarly, G* is a fully invariant subgroup for any » € N.
If a Sylow p-subgroup is unique, then it is fully invariant; this happens, for
example, in abelian groups.

An isomorphism of a group onto itself is an automorphism; all automor-
phisms of a group G form the group AutG as a subgroup of S¢ (that is,
with respect to composition of mappings). For any given g € G, the mapping
Ty 1T — g lzg = 29 is the inner automorphism induced by g.

A subgroup H of a group G issaid to be characteristicin G, if it is invariant
under all automorphisms of G, that is, if H? = H for every ¢ € AutG.
Similarly to Lemma 1.2, it is sufficient to require H¥ < H for all ¢ € AutG.
Clearly, a characteristic subgroup is normal, since it is in particular invariant
under all inner automorphisms of G. A section M/N is called characteristic, if
both M and N are characteristic subgroups. Every fully invariant subgroup is,
of course, characteristic. (So the examples above, £,(P), G™, a unique Sylow
subgroup, are all characteristic subgroups.) The converse may not be true,
for example, Z(G) is always a characteristic subgroup, but need not be fully
invariant (Exercise 1.3).

In general, a normal subgroup of a normal subgroup may not be normal in
the whole group; for example, the subgroup A = ((12)(34)) of order 2 in S, is
normal in the subgroup B = ((12)(34), (13)(24)) of order 4 which, in turn, is
normal in Sy, but A 4 S,.

Lemma 1.8. (a) If C is a characteristic subgroup of N and N is a normal
subgroup of a group G, then C is also normal in G.

(b) If, in addition, N is characteristic in G, then C is characteristic in G.

(c) If C is fully invariant in N and N is fully invariant in G, then C is
fully invariant in G.

Proof. (a) For every g € G the restriction 7y|, of the inner automorphism
7, to N is an automorphism of N since N = N, and 74|, preserves the
operations since 7, € AutG. Then €9 = C™ = C, since C is characteristic
in N.

(b) If N is characteristic in G, then a|y € Aut N for every a € Aut G for
similar reasons, and hence C* = C since C' is characteristic in V.

(c) For any endomorphism ¢ of G its restriction to N is an endomorphism
of N; hence C is g-invariant. O

Lemma 1.9. For any subgroup H < G, Cg(H) is a normal subgroup
of No(H) and Ng(H)[/Cq(H) is isomorphic to a subgroup of Aut H.

Proof. For every g € Ng(H), the restriction 7,|g is an automorphism of H
since N9 = N. The mapping 9 : g — 74|, is a homomorphism of Ng(H) into
Aut H since (z91)% = 299 for any = € H so that (g192)° = g?g5. An element
g € Ng(H) belongs to the kernel of ¢ if and only if 7y|g = 1, & 2¢ =z
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for every = € H, that is, ¢ € Cg(H). By the Homomorphism Theorems,
Ng(H)/Kerd = No(H)/Co(H) = Ng(H)® < Aut H. a

Lemma 1.10. If H is a normal (or characteristic) subgroup of G, then
both Ng(H) and Cg(H) are normal (or characteristic) subgroups of G.

Proof. The proof is left as an exercise for the reader. g

Commutators and commutator subgroups. We define recursively
commutators of weight 1,2, ... in variables z,,2,,... as formal bracket ex-
pressions. The letters z;,z2,... are commutators of weight 1; if ¢; and e
are commutators of weight w; and w, then [¢, ¢;] is a commutator of weight
wy + ws. The multiweight of a commutator is the collection of the partial
weights in particular variables, which are defined recursively in an obvious
way. For example, [[z1,z3], 21] is a commutator of weight 3, and of weight 1
in z, and of weight 2 in z,. A commutator [...[[a1,a2),as],... ,ax] is called
simple (or left-normed) and is denoted by [a1, as,. .. , ax].

The commutator [a, b] of two elements in a group is defined to be {a,b] =
a~'b7'ab; to avoid confusion, we had better say that [a, )] is the value of the
(formal) commutator [z1,z,] on a,b. Then commutators of greater weight in
the elements of a group are defined as the values of formal commutators on
these elements. We may also use the same notions of weight and multiweight
for these values. Commutators may be different as formal bracket structures,
but their values, commutators in the group elements, may well be equal; for
example, any commutator of weight > 2 in the elements of an abelian group
is trivial.

Lemma 1.11. The following commutator formulae hold for any elements
a,b,c in any group:
(a) a® = afa, )],
(b) [ab,c] = [a, c]’[b, c] = [a, ¢][a, c, b][b, ],
(c) [a,be] = [a, c][a, b]° = [a, c][a, b][a, b, ],
(d) [a,b])"! = [b,a].

Proof. A direct verification, by expanding the commutators by definition;
for example, in (b) we have [ab,¢] = (ab)~!¢7labec = b~la~lc 'abe on the
left, [a, c]®[b, ¢] = b7 [a, c]blb,c] = b~'a"lc  achb~ ¢ be = b~1a"1c 1 abe in the
middle, and on the right [a, ¢][a, ¢, b][b, c] = a !¢ lac[a, c] " b a, c]bb~ e be =
a e lace la Yeabla~ e tachb~1c lbe = b la"lc labe, and all three results
are the same. g

For two subsets M and N in a group G, we define the mutual commutator
subgroup to be [M, N] = ([m,n] | m € M, n € N). Note that [M, N] = [N, M],
since [n,m] = [m,n]™! and the inverses of the elements generate the same
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subgroup. If N, say, consists of one element n, we write simply [M,n].

Lemma 1.12. If M and N are subgroups of a group G, then [M,N] is a
normal subgroup of the group (M, N).

Proof. It is clear that [M,N] < (M, N), so it suffices to prove that
(M,N) < Ng([M, N]); since Ne([M, N]) is a subgroup, it suffices to prove
that both M and N are contained in Ng([M,N]). By symmetry, we need
only show that M < Ng([M,N]). By Lemma 1.2, it suffices to show that
[M,N]? < [M,N] for any ¢ € M. By Lemma 1.7, we need only prove
that [m,n]? € [M,N] for any m € M, n € N (since [M, N] is generated
by the [m,n]). By Lemma 1.11(b), [m,n]? = [mg,n][g,n]! € [M, N] because
mg € M since M is a subgroup. O

Lemma 1.13. If M is a subgroup of G, then [M,g] = [M,(g)] for any
gE€QG.

Proof. Clearly, [M,g] < [M,(g)]. We denote by a bar the image in
M/[M,g). For any it € M, we have [/, §] = 1 which implies § € Ciz(7%). Since
C7(7R) is a subgroup, §* € Cy;(7) for every k € Z. Hence [m, ¢*] € [M, g] for
all m € M, k € Z, and therefore [M, (g)] < [M, g] since [M, g] is a subgroup.

O

For any homomorphism ¢ of a group G and any a,b € G, we have
(a,b]? = [a®,b%], whence [M,N]¥ = [M¥ N¥] (1.14)

by Lemma 1.7. It follows that if both M and N are characteristic (or fully
invariant, or normal) subgroups, then [M, N] is also a characteristic (respec-
tively, fully invariant, normal) subgroup.

The derived subgroup of a group G is defined to be [G, @] (often denoted
by G’). The derived subgroup is fully invariant, since G is. It is easy to see that
[G, @] is the smallest normal subgroup such that the factor-group is abelian.

Lemma 1.15. For a normal subgroup N of a group G, the factor-group
G/N is abelian if and only if [G,G] < N.

Proof. For z,y € G, let £ and § denote their images in G/N (under the
natural homomorphism). By (1.14), [z,y] = [%,7]. Then G/N is abelian
& [z,y] = [Z,7] = 1 for all £,5 € G/N & [z,y] € N for all z,y € G &
[G,G] < N. |

In fact, any subgroup containing [G, @] is normal in G (Exercise 1.2).
We conclude this subsection with remarks on commutator subgroups. The
same simple commutator notation is used for subgroups:

[A4,B,C,...,Z]=[..[A,B],Cl,...,2)
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Lemma 1.16. Let H be a subgroup of a group G. Forg € G and F < G,
(a) g€ Ne(H) & [H,g] < H,;
(b) F< Ng(H) & [H,F|< H;
(c) HLG & [H,G] < H.

Proof. We have (a) = (b), since Ng(H) is a subgroup and [H,F] < H
& [h,g) € Hforallh € H,g € F & [H,g) £ H for all ¢ € F. Clearly,
we have (b) = (c). So we need to prove (a) only. If g € Ng(H), then for
any h € H we have [h,g] = h™'g"'hg = h™'h% € H and hence [H,g], the
subgroup generated by the [h,g], lies in H. Conversely, if [H,g] < H, then
H > [h,g)=h'g7'hg = h~'h9 for any h € H, whence h? € H for any h € H,
that is, g € Ng(H). a

The commutator formula [ab, ¢] = [a, ¢]°[b, ¢] from Lemma 1.11 can some-
times be used to compute the same for subgroups.

Lemma 1.17. Suppose that [A,C] is a normal subgroup in (A, B,C); then
[AB,C] = [A,C][B,C].

Proof. 1t is clear that [AB,C] > [A,C][B,C]. Fora € A,be B, c€ C, for
every generator of the left-hand side, [ab,c] = [a, ¢]’[b, ¢] € [A,C][B, C] since
[A,C] is normal; hence [AB, C] < [A, C][B, C] since A, C][B, C] is a subgroup.

g

The condition of Lemma 1.17 is satisfied, for example, if B = C' (by Lem-
ma 1.12), or if both A and C are normal subgroups (by (1.14)).

Groups acting on sets. A group G is said to be acting on a set M if a
bijection my : M — M corresponds to every element ¢ of G in such a way that
Tqp is the composition of 7, and = for any a,b € G. (It follows at once that
m = lp and 7g-1 = (7,)7'.) In other words, g — , is a homomorphism of G
into Sy, the group of all bijections of M. The action is faithful if the kernel
of this homomorphism is 1; then G can be regarded as a subgroup of Syy.

Let G be a group acting on a set M. The bijection corresponding to ¢ is
often denoted by the same letter, so that mg denotes the image of m € M
under 7y, g € G. The above requirement then takes the form m(ab) = (ma)b,
for all m € M and for all a,b € G. The elements of M are often called points.
For a fixed m € M, the set mG = {mg | ¢ € G} is called a G-orbit. The
terminology of permutation groups is usually applied to G with respect to the
image of G in Sps: for example, G is transitive on M, if M is the only orbit.
The subset G,, = {g € G | mg = m} is a subgroup of G, the stabilizer of the
point m.

Lemma 1.18. If a group G acts on a set M, then M is the union of
disjoint G-orbits.
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Proof. Since m1 = m, clearly M is the union of the orbits. If m,g, = m.gs,
then my = mag297", whence mih = magagi'h = ma(g297 ' h) € maG for all
h € G, so that mG C m.G; by symmetry, myG C m,G too. ]

Lemma 1.19. If a finite group G acts on a set M, then |mG|- |Gn| = |G|
for everym € M.

Proof. The idea is that the element mg is determined only by the coset
of G,, which g belongs to. Indeed, if ¢ = hg; for b € G,,, then mg =
m(hg1) = (mh)gy = mg1. If Grgr # G g2, then mg, # mg,, for otherwise, if
mg, = mgz, then mgy9;' = m so that g,9;' € G, whence Gpg1 = G2, 2
contradiction. Thus the number of elements in mG is equal to the number of
the cosets of G, and the result follows by Lagrange’s Theorem. ]

Corollary 1.20. If a finite group G acts on a set M, then the cardinality
of every orbit |mG| divides the order of G. a

We now consider several important examples of actions. Every group G
acts on itself by right multiplication: the action 7, of an element ¢ € G is
defined as 7, : £ — zg for z € G. Indeed, (zg)h = z(gh) by the associative
law. This action is faithful (1ry = 1g = 1 = g = 1); all stabilizers are trivial
(ag = a = g = 1); the whole set G is one orbit (ar, = b < z = a~1b).

Every group G acts on itself by conjugation, the action 7, of g € G being
mg iz — g lzg = 29 for z € G. Indeed, (z9)* = h7'g lzgh = 2. The
kernel of this action is clearly Z(G); an orbit is the set a® = {g7'zg | g € G},
the conjugacy class containing a; the stabilizer of a point a is the centralizer
Cc(a). Therefore G is the union of disjoint conjugacy classes by Lemma 1.18.

Corollary 1.21. The number |a®| of elements conjugate to an element
a € G is equal to the index of the centralizer |G : Cg(a)|.

Proof. Apply Lemma 1.19 and Lagrange’s Theorem. g

More generally, any subgroup H < G acts by conjugation on any normal
subgroup N d Gj the kernel is Cy(N).

A group G is said to act as a group of automorphisms on another group F
if the action is a homomorphism of G into Aut F. The action by conjugation
is an example of action as automorphisms (inner ones). Action as automor-
phisms need not be faithful. For example, suppose that ¢ € Aut G and H is a
characteristic subgroup of G. Then () acts on H as the restriction (p)|x; the
kernel of this action is C,)(H) = { € () | ¥|n = 1}, so that (p)/Ci,)(H) is
a subgroup of Aut H. If the order of ¢ is n, then the order of |y is a divisor
of n (but it is often said that ¢ acts on H as an automorphism of order n).

Of course, any subgroup of Sps for any set M can be viewed as acting on M,
so the group GL(V) of all non-degenerate linear transformations of a vector
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space V acts on V, the automorphism group Aut G acts on G, and so on.
The following fact is a good illustration of the use of the notion of action.

Poincaré’s Theorem 1.22. If H is a subgroup of finite indez n in a group
G, then H contains a normal subgroup of G of finite indezx at most n! in G.

Proof. Consider the action of G on the set of right cosets of H by right
multiplication, the action 74 of g € G being 7, : Hx — Hzg. This really is an
action since Hz(g192) = (Hzg1)g: by the associative law. The kernel of this
action N is then the required normal subgroup. Indeed, N is normal in G as
the kernel of the homomorphism of G into the group Sas of all bijections of the
set M = {Hz |z € G}. Next, N < H since Hg = H implies ¢ € H. Finally,
|G : N| =|G/N| £ |Su| = n!, since |M| = n by the hypothesis. a

§ 1.2. Rings and modules

Rings. In general, the multiplication in a ring is only supposed to be left
and right distributive with respect to addition. If a ring K has the neutral
element for multiplication (unity), denoted by 1, then K is said to have 1; if the
multiplication in K is associative, then K is associative; if the multiplication
is commutative, then K is commutative.

Examples. 1.28. The sets Z, Q, R, C with respect to the usual addition
and multiplication are associative commutative rings with 1.
1.24. Let 7 be a set of prime numbers, then the set

Qr = {m/n | m € Z; n is a product of powers of primes in 7}

is a subring of Q.

1.25. The set k[z] of polynomials in one variable z over a field k is also a
commutative, associative ring with 1.

1.26. The set k[z,y] of polynomials in two non-commuting variables is an
associative ring with 1, but is non-commutative (a free associative k-algebra
on free generators z and y). The same notation k[z,y] is more often used
for the polynomial ring in two commuting variables, which is a commutative
associative ring with 1.

1.27. Vectors of the three-dimensional real vector space, with respect to
the usual addition of vectors and the so-called vector multiplication u X v, form
a non-associative and non-commutative ring without 1 (this is an example of
a Lie ring).

1.28. Let G be a group and K an associative commutative ring with 1.
The group ring KG is the set of all (formal) finite sums Y g kg9, kg € K,
equipped with addition subject to collecting terms, and with multiplication
induced by multiplication in K and G, that is, k1g1 - k2g2 = (k1k2)(g192) for
ki, ky € K, g1,92 € G, and extended by the distributive laws. If K is a field,
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then KG is a vector space with basis {g | ¢ € G} (with multiplication as
above).

1.29. The set Hom A = Homz A of all endomorphisms of an abelian group
A is a ring with respect to addition defined for ¢,% € Hom A4 as z(¢ + ¢) =
zp + z1p, and multiplication as composition of mappings. This is an associative
ring with 1 (the identity mapping), which is not commutative in general.

A subring H < K of a ring K is a subset closed under all operations of the
ring K. Direct (Cartesian) sums of rings are direct (respectively, Cartesian)
sums of their additive groups with the coordinate-wise multiplication. A (two-
sided) ideal I 4 K of a ring K is an additive subgroup such that ab € I
and ba € I for any a € I and b € K; in particular, I < K. (If only one of
these inclusions is required, we speak about a right or left ideal.) Ideals are
exactly the kernels of homomorphisms of rings. The Homomorphism Theorems
hold for rings, similar to those for groups. The factor-ring K/I of a ring K
by an ideal I is the additive factor-group K/I with induced multiplication
(a+ I)(b+ I) = ab+ I, which is well-defined precisely because I is an ideal.

The factor-ring Z/nZ of integers modulo n is a finite ring of order n. If p
is a prime number, then Z/pZ is a field of p elements, denoted also by F,.

We denote by {M) the span of a subset M in a ring, the additive subgroup
generated by M; it consists of Z-linear combinations of elements of M. The
(sub)ring generated by a subset M is denoted by (M). A ring R = (M) is
homogeneous with respect to the generating set M, if R = @;cy Ri, where R; is
the homogeneous component of degree i, the span of all monomials of degree ¢
in the elements of M. The multidegree of a monomial is a collection of the
partial degrees in particular elements; the ring R = (M) is multihomogeneous
with respect to M if R is the direct sum of multthomogeneous components. The
ideal ;a( M) generated by a subset M of a ring K is the minimal ideal containing
M, the intersection of all ideals containing M. The additive subgroup of ;9(M)
is generated (spanned) by all monomials involving at least one element of M.

Lie rings are considered in more detail in a separate chapter, Chapter 5.

Modules. Let K be an associative (but not necessarily commutative)
ring with 1. An additive group M with unary operations m — mk € M,
m € M, k € K, is a (right) K-module if ml = m, (m £ m’)k = mk £ m'k,
m(k £ k') = mk £ mk/, and (mk)k’ = m(kk') for any m,m' € M, k, k' € K.
A K-submodule H < M of a K-module M is a subset closed under all module
operations: H is an additive subgroup of M and hk € Hforanyh € H, k€ K.
The K-submodule generated by a subset M is denoted by (M) and consists
of all K-linear combinations of elements of M. A mapping ¢ : M — N is
a K-homomorphism of two K-modules M and N if ¢ preserves all module
operations, that is, ¢ is a homomorphism of the additive groups M and N
and (mk)? = m¢k for any m € M, k € K. A bijective homomorphism is an
isomorphism. K-Submodules are kernels of homomorphisms of K-modules;
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the Homomorphism Theorems hold for K-modules with natural adjustments.
Direct (Cartesian) sums of K-modules are direct (Cartesian) sums of their
additive groups with the coordinate-wise multiplication by elements of K.

Examples. 1.30. Vector spaces over a field k are exactly k-modules.
Subspaces are k-submodules; factor-spaces are factor-modules; if {e; | ¢ € I}
is a basis of a k-space V, then V is the direct sum of the 4(e;). Every abelian
group A is a Z-module, with an being just the nth power of a € A. In a
natural way A is also a (Homz A)-module (see 1.29).

1.31. Every ring K is a natural K-module; K-submodules of K are exactly
(right) ideals of K.

1.32. Suppose that G < Aut A for an abelian group A. Then A is a
ZG-module, with

a (Z kgg) =) ke,
9€G 9€G

for a € A and k; € Z. Submodules are precisely the G-invariant subgroups.
For ZG-modules, the module homomorphisms (isomorphisms) are often called
G-homomorphisms (G-isomorphisms). An example of a G-isomorphism: ¢ —
ka for a fixed integer k.

Suppose that G is a group of linear transformations of a vector space V

over a field k. Then V is a kG-module, with

a (Z kgg) =D kq(ag),
9€C@ 9€G
for a € A and k, € k.

1.33. Let K be an associative ring with 1. A free K-module F on free
generators {z; | ¢ € I} is the direct sum of the isomorphic copies z; K = {z;k |
k € K} of the additive group of K with (¥; z:ki)k = ¥; zi(kik). For any
elements m; € M in any other K-module M the mapping z;1 — m; extends
to a homomorphism of F into M.

Definition 1.84. Let K be an associative commutative ring with 1. The
tensor product A ® B of two K-modules A and B is the factor-module of the
free module A x B on the free generators (a, b), a € A, b € B, by the submodule
generated by all elements of the forms

(ak,b) — (a,bk), (ak,b) — (a,b)k,
(a +a,b) — (a,b) — (d',b),
(a,b+ V) — (a,b) - (a,b),

for all a,a’ € A, b,b' € B, k € K. The image of (a,b) € AXx Bin A® B is
denoted by a ® b. In other words, A ® B can be viewed as the set of all finite
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formal sums Y a; ® b;, a; € A, b; € B, with the following identifications:

ak@b=a®bk=(a® bk,

(e+d)Rb=a®b+d b, a®@b+d)=a®bt+ax b,

foralla,a’€ A, b,V e B, ke K.
Note that this definition is suitable only for commutative K. To indicate
the ground ring, the notation A ®x B is used.

Lemma 1.35. Let K be a commutative and associative ring with 1, and
suppose that A = @, A; and B = @; B; for K-modules A;, B;. Then A® B is
isomorphic to @, ; A; ® B; under the isomorphism 3, 0,3, b; = ¥, ; a; ®b;,
for finite sums of elements a; € A;, b; € B;.

Proof. We consider only the simplest case of A = A, B = B, @ B, the
proof in the general case being only an extension of the same argument. We
adopt the notation of Definition 1.34. The mapping (a, b + b2) — (a,b,) +
(a,b2) of A X (B & B,) into A x B; & A x B, is well-defined since the sum
B, & B, is direct. This mapping extends to a homomorphism ¢ of the free
K-module A x (B, @ B;) onto A x B, @ A x B,. A routine check shows that
Y maps the submodule of A x (B, @ B;) that defines A ® (B, @ B,) as the
factor-module by Definition 1.34 exactly onto the submodule of Ax By® A x B,
that defines A ® B, & A ® B, as the factor-module. O

Tensor products are used for eztending the ground ring. Let K < L be
commutative associative rings with 1, and let M be a K-module. The ring L
is also a K-module with respect to multiplication by elements of K. The tensor
product M®p L can be regarded as an L-module, with respect to multiplication
by elements of L defined as (m ® a)b=m ® ab, for m € M, a,b € L.

Now suppose that in this situation, M is also a X G-module, for a group G.
Then M Qg L can be regarded as an LG-module: put (m®a)g = (mg®a), for
any m € M, a € L, g € G, and extend by linearity. (Another way of defining
the same thing is to consider L as a trivial left KG-module; then M Qgq L
can be defined naturally.)

Example 1.36. Let ¢ be a linear transformation of a twe-dimensional
0 1
-1 0/
Then V is an R{p)-module. Extend the ground field forming V @r C. It is
clear that the matrix of ¢ in the C-basis e; ® 1, e2 ® 1 is the same. But now it
is possible to choose another basis consisting of eigenvectors, with respect to
i

0

vector space V over R, given in some basis €;, e; by the matrix

which the matrix of ¢ will be ( , with eigenvalues on the diagonal.
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Algebras. Suppose that R is a ring whose additive group is also a K-
module for some commutative associative ring with 1 such that both structures
agree in a natural way: (rirz)k = (rik)ry = ri(r2k) for all r,r, € R, k € K.
Then R is a K-algebra. (Of course, every ring is a Z-algebra.) The definitions
of subalgebras, ideals, factor-algebras, direct and Cartesian sums are similar
to those of subrings, etc., but taking K-spans instead of Z-spans.

If K < L, then we can form the tensor product R ®x L, which can be
regarded as an L-algebra under multiplication defined as (r; ® [))(r. ® l;) =
riry ® 1l on the generators of the additive group.

Suppose that R is a K-algebra; the set of all K-homomorphisms Homg R is
itself a K-algebra with multiplication by composition of mappings, addition as
z(p +v¥) = z¢ + 29, and multiplication by elements of K as z(ky) = k(zy) =
(kz)ep, for ¢, € HomgR, k€ K, z € R.

§ 1.3. Algebraic systems, varieties and free objects

The concept of an algebraic system comprehends virtually all objects in
algebra: groups, rings, modules, vector spaces, etc., all are algebraic systems.
Given a set A, a mapping f: A X .-+ X A — A is an n-ary algebraic operation

S ———’

on A. The title “algebraic” simplynmeans that the domain of f is the whole
of Ax ..+ x A and the values of f are all in A itself. The special case of a
e ———

n
0-ary (nullary) operation means taking a fixed element (a constant) in A. An
algebraic system is a set with some algebraic operations on it, f;’, j€eJ,of
possibly different arities n;; there can be infinitely many operations. To stress
that the algebraic system is defined by both the set and the operations, more
complex notation is used sometimes: A = <A | f;’, jed >; here A is the
underlying set of 2 and {f;” | j € J} is the signature of 2.

Subsystems are subsets that are closed under all operations. The subsys-
tem (M) generated by a subset M is the smallest (with respect to inclusion)
(sub)system containing M, the intersection of all subsystems containing M.
It is clear that (M) consists of all possible expressions in the elements of M
under arbitrarily repeated operations (finitely many times).

Homomorphisms of algebraic systems are mappings that preserve all op-
erations; a correspondence between sets of operations themselves is assumed
(in other words, homomorphisms make sense only for algebraic systems of
the same signature). A homomorphism of a system into itself is an endo-
morphism. Bijective homomorphisms are isomorphisms; an isomorphism of
a system onto itself is an automorphism. Subsystem that is invariant under
any endomorphism is fully invariant; under any automorphism, characteristic.
Under certain conditions (which will be satisfied for those algebraic systems
that we shall use), the analogues of the Homomorphism Theorems hold for al-
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gebraic systems, and kernels of homomorphisms are defined naturally (normal
subsystems or ideals, like normal subgroups in groups, or ideals in rings).

Examples. 1.37. Groups are algebraic systems (G | f2, ¢!, k%) with three
operations satisfying certain laws. The binary operation is the group multi-
plication, usually denoted by dot which is often omitted, f%(a,b) = a- b = ab;
the unary one is taking the inverses, denoted by g'(a) = a™!; the nullary one
is taking the identity element, denoted by A°® = 1. The laws are the group
axioms: a(be) = (ab)e, aa™' =@ 'a =1, al = la = q, for all a,b,c € G.

1.38. A K-algebra is an algebraic system with two binary operations,
multiplication and addition, the unary operation of taking the opposite element
—a, the nullary operation of taking 0, plus |K| unary operations of multiplying
by scalars from K; of course, the axioms of algebras must hold.

1.39. Let a group {} be acting as automorphisms on a group G (not
necessarily faithfully). Then G can be regarded as an algebraic system which
is a group with additional unary operations denoted by the elements of
that satisfy the laws g** = (¢°)® and (gh)* = g¢°h® for all g,h € G and
a, b € Q. With Q fixed, such algebraic systems are called operator groups
with operator domain {2, or simply Q-groups. Subsystems are the {)-invariant
subgroups called §2-subgroups. A homomorphism ¢ of an Q-group G (an Q-
homomorphism) must be a group homomorphism that commutes with the
action of §, that is, (¢*)¢ = (¢¥)* for all g € G, a € Q. The kernels of Q-
homomorphisms are precisely the normal -invariant subgroups.

1.40. Suppose that, for every positive integer &, a group G has a unique kth
root of every element a € G, an element b € G such that b* = a. Then G can
be viewed as an algebraic system with additional unary operations of taking
kth roots, k € N, denoted by a#, and satisfying the laws (a*) = (a*)* = a.
Note that these laws imply the uniqueness of the kth root in Gj in particular,
G is necessarily torsion-free. Such groups are called Q-powered groups, since
Q-powers can be defined as a» = (a=)™. (Sometimes such groups are also
called Q-groups, but we reserve the term Q-groups for groups with operators.)
The simplest example of a Q-powered group is the additive group of Q, which
is generated as a Q-powered group by one element 1, although it cannot be
generated by finitely many elements as an abstract group (“abstract” means
with respect only to the usual group operations). The subsystems are only
Q-powered subgroups, that is, closed under taking roots (divisible). Let G be
a Q-powered group and let ¢ be an isomorphism of G as an abstract group.
Then ¢ is automatically an isomorphism of Q-powered groups. Indeed, for
any a € G and = € Q we have ((a®)*)" = ((a»)")® = (a™)® = (a®)™
whence (a%)? = (a®)™ since the nth root of (a¥)™ is unique. However, a
homomorphism of G as an abstract group need not be a homomorphism of G
as a Q-powered group.

More generally, one can similarly define K-powered groups, for a commu-
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tative associative ring K with 1.

For a fixed signature {f;” | j € J}, an algebraic system F = (X) is
free on the set of free generators X = {z; | i € I} if, for any elements g;,
i € 1, in any algebraic system G of the same signature, the mapping z; — ¢;
extends to a homomorphism of F into G; this homomorphism is unique since
F = (X). For a given cardinality |7| of the set of free generators, a free
system is unique up to isomorphism: if F” is also free on the free generators z/,
i € I, then the composition of the homomorphisms extending the mappings
z; — z! and z; — z; is identical on the z; and hence identical on F', so that
both homomorphisms are bijections. A free system F' can be constructed as
the set of all formal expressions (¢erms) in the z; under arbitrarily repeated
applications of the f;’. Indeed, the operations f; are defined on this set
F, since f:’ (t1, ..., ta,) is a term if the t, are terms. If G is an arbitrary
system of the same signature and the g; are arbitrary elements of G, then the
mapping z; — g¢; obviously extends to a homomorphism 9 of F' onto G: this
homomorphism is simply the substitution of the g; in place of the z; in all
terms. The elements of F' are also called words of given signature; each word
depends only on a finite subset of free generators. It is convenient to denote
by w(g1, .., gm) = w(Z1, ... , Tm)® the image of w = w(zy, ..., zm) € F
and call it the value of w on the g;.

A variety is the class of all algebraic systems of a fixed signature defined
by a given set of laws that are equalities of terms. More precisely, for a set of
pairs of words W C F x F (where F is the free system), a system A belongs
to the variety Uw defined by W, if u(as, ..., an) = v(ay, ..., an) for all
ay, ..., am € A and for all (u, v) € W (u and v can be assumed to depend on
the same finite set 2, ... , zn, of free generators). For example, the class of all
groups is the variety defined by the group laws; in fact, all classes of algebraic
systems in Examples 1.37-1.40 are varieties. Clearly, additional laws define
a subvariety of a given variety. For example, abelian groups of exponent 2
form a subvariety of all groups defined by the additional laws z,zs = z,2, and
z? = 1. Subvarieties of the variety of groups are called varieties of groups; the
subvarieties of (associative, or Lie) rings are called varieties of (associative, or
Lie) rings.

The Cartesian product Crier A; of a family of systems {A; | i € I} of given
signature is the set of all functions g : I — ;e Ai such that g(i) € A;, with the
coordinate-wise operations: f;7(g1,... ,9x;)(i) = f;°(91(),... ,9n;(¢)). The
following is a straightforward consequence of the definitions.

Lemma 1.41. Any variety is closed under taking subsystems, homomor-
phic images and Cartesian products. g

The converse is also true (G. Birkhoff’s Theorem), but we shall not need
this fact.
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Every variety of algebraic systems has its own (relatively) free objects:
an algebraic system F = (X) is free in the variety By on the set of free
generators X = {z; | ¢ € I} if, for any elements g;, ¢ € I, in any algebraic
system G € Vw, the mapping z; — ¢; extends to a (unique) homomorphism
of Finto G. Similarly to “absolutely free” systems above, it is easy to see that,
for a given cardinality |X|, a free system in Uy is unique up to isomorphism.
A free system of the variety Yy can be constructed as the factor-system of
an “absolutely” free system of given signature by the congruence defined by
the laws from W. However, such a straightforward way of constructing free
objects usually does not give much information on their properties.

Examples. 1.42. A free group F' on free generators z,,z,,... can be
viewed as the collection of all group words in the z;, with multiplication by
juxtaposition, with cancellation by the group axioms: vlw = vw, vz} z;w =
ve;z;y'w = vw. It still requires some effort to check that the multiplication
is well-defined and associative; the empty word is the neutral element of F'.
This description does not say much about the structure of the free group F'.
In Chapter 9 we discuss another way of constructing free groups, which gives
more information, like existence of an infinite descending series with abelian
factors and trivial intersection (which may be rather surprising, since F' has
all nasty groups as its images; for example, simple ones).

1.43. As a rare exception, the structure of a free associative Q-algebra
A on free generators z,,z;,... seems to be quite transparent: A is the set
of all (finite) linear combinations of monomials in the z; subject to collection
of terms, the monomials are multiplied by juxtaposition (no cancellation is
allowed), and arbitrary linear combinations are multiplied by the distributive
laws. Thus, A is homogeneous (even multihomogeneous) with respect to the
generators &;, so that A = @iy Ak, where Ay, is the Q-span of all monomials
of degree k in the z;. If the number of free generators is finite, n, say, then
dim A; = n*.

1.44. Suppose that () is a fixed group; consider the class of all Q-groups (in
the sense of Example 1.39). A free Q-group with free generators z;, 7 € I, can
be constructed as an abstract free group F' on free generators z¢,i € I, a € §,
admitting §) as a group of automorphisms induced by permutations of the free
generators: (z¢)° = z2°, where b € Q, while z?, z2® are formal letters. We claim
that F is a free Q-group on the free generators z}. Clearly, F is generated by
the z! as an Q-group. If g;, ¢ € I, are some elements of an arbitrary {2-group
G, then the mapping z¢ — g¢¢ extends to a homomorphism ¢ of the abstract
group F into G. This homomorphism is also a homomorphism of -groups
extending the mapping z} — g;. Indeed, we need to show that (w®)¢ = (w*)?
for any w € F and b € Q; since both b and ¢ are homomorphisms, it suffices to
prove that they commute on the generators: ((z2¢)*)? = ((22)*)® for any letter
z¢. By definition, on the left we have ((22))% = (22%)¢ = g?*, and on the right
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((z2)*)® = (¢2)® = ¢g2*, the same.
1.45. Although we may think of free Q-powered groups in terms of the
general construction, it is not even clear if there are any non-abelian Q-powered

groups. We shall construct free nilpotent (non-abelian) Q-powered groups in
Chapter 9.

From now on we shall be dealing ezclusively with algebraic systems that
are groups with respect to one of their operations, and f*(1,...,1) =1 for
all operations, where 1 is the neutral element with respect to the chosen group
operation. For such systems any law © = v can be rewritten in the form w =1
with w = wv™! (or w = 0, if the group operation is written additively, as in
rings, say). The kernel of a homomorphism is then defined as the full inverse
image of 1 (of 0); kernels of homomorphisms are also called normal subsystems
or ideals. Note that the neutral element with respect to the chosen group
operation forms a normal subsystem as the kernel of the identity mapping.
The Homomorphism Theorems hold for such systems, with formulations quite
analogous to those for groups.

Let 20 denote some variety of such systems. Changing notation, let F' =
(X) be a free system in the variety 0 on the set of free generators X; elements
of F' are called B-words (for example, group words, if 2 is the variety of all
groups). For a set of U-words W C F, we define the (sub)variety Uw as the
class of all systems in U satisfying the laws w =1 for allw € W (or w = 0, in
additive notation). Free systems in the subvariety 0w then take the form of
factor-systems of free systems in U by the so-called verbal subsystems.

Definition 1.46. For a system G € % and a set of U-words W C F,
the verbal subsystem W(G) is the smallest (with respect to inclusion) normal
subsystem containing the values of all words w € W on all elements of G.

Thus, by definition G € Uw if and only if W(G) = 1.
Lemma 1.47. For any homomorphism ¢ of G, we have W(G)¥ = W(G¥).

Proof. For any w € W we have w(g,...,9,)® = w(gy,...,9?). By the
Homomorphism Theorems, W(G)¥ is the smallest normal subsystem that con-
tains all w(gy,...,9,)?, and W(G?) is the smalest normal subsystem that
conatins all w(gy,...,g?). Hence they coincide. ]

In particular, W(G) is a fully invariant subsystem of G. The converse is
not true in general, but is true for the free systems.

Lemma 1.48. Every fully invariant subsystem H of a free system F' is a
verbal subsystem; in fact, H = H(F').

Proof. Obviously, H < H(F). Let h = h(zy,... ,z,) be any element of H
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as the set of W-words, and let f,..., f, be arbitrary elements in F. Then
the mapping z; — f; extends to a homomorphism ¥ of F into F' (with other
free generators mapped to 1, say). Since H is fully invariant, h(fi,..., fn) =
k(zi,... ,2,)° € H® C H. Thus, H(F) < H. a

The verbal subsystem W (F') is itself a set of words; by Lemma 1.48 this set
of words defines the same verbal subsystem: W(F)(F) = W(F). If V C F is
another set of U-words, then V(W (F')) is fully invariant in F' by Lemma 1.8(c)
and hence is a verbal subsystem of F' by Lemma 1.48.

Lemma 1.49. For any system G € U, the subsystem V(W(Q)) is verbal
in G.

Proof. There is a homomorphism ¢ of a suitable free system F' onto G.
Then, by Lemma 1.47, V(W(G)) = V(W(F?)) = V(W(F)?®) = V(W(F))?,
and this is a verbal subsystem of G, again by Lemma 1.47, as the image of the
verbal subsystem V(W(F')) of F under 9. a

The factor-system F//W(F) is the free system in Yy on free generators y;,
i € I, the images of the z;. Indeed, for any elements ¢g; € G of a system G €
Uy, there is a homomorphism ¥ of F into G extending the mapping z; — g;.
Since all words in W are trivial on the g;, the kernel of ¥ contains W(F) (by
Lemma 1.47), so that ¥ induces the required homomorphism of F//W(F') into
G extending the mapping y; — ¢;.

Another important though simple observation: every possible law depends
only on finitely many variables. Therefore, defining (sub)varieties, there is no
loss of generality in assuming that the set of 2-words is a subset of a countably
generated free system in 2. The same idea leads to the following lemma.

Lemma 1.50. All systems in the variety Uw satisfy all laws from a set
of U-words V if and only if the free countably generated system U in Yy
satisfies all laws from V: that is, Uy CVy & V(U) =1 & U € Vy.

Proof. We need only to prove that V(U) = 1 = Uw C Dy. Every
v € V depends only on finitely many variables: v = v(z1,...,z,). Let
U1,... ,up be (a subset of) free generators of U; then v(ui,...,un) =1
by the hypothesis. If ¢1,...,gn are any elements in any system G € Uw,
the mapping u; — ¢; extends to a homomorphism ¥ of U into G. Then
v(g1,.-. ,9n) =v(ul,. .. ul) = v(ur,... ,un)? = 1. a

Now we consider some specific features of verbal subgroups in the variety
of groups. Let G be a group and let W be a set of group words. Then the

verbal subgroup W(G) is just the subgroup generated by all values of words
from W on G:

W(G) = <w(91»--- yInw)) | 9 €G, w € W>.
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This subgroup is always normal, since w(gy, . . . , gnw))* = w(gl,. .. ,g,':(w)) for
any h € G. For example, the derived subgroup [G, (] is the verbal subgroup
of G with respect to the word [z,y] = 27!y 'zy, and G™ is the verbal subgroup
with respect to the word z™.

Lemma 1.51. If M = V(G) and N = W(GQ) are verbal subgroups of a
group G, then [M, N] is also a verbal subgroup.

Proof. Let F' be a free group. Since V(F') and W(F) are fully invariant,
[V(F), W(F)]is a fully invariant subgroup of F' by (1.14). Hence [V(F), W(F)]
is a verbal subgroup of F' by Lemma 1.48. For an arbitrary group G, there is
a homomorphism 9 of a free group F onto G; then by Lemma 1.47 and (1.14)

[M,N] = [V(F)’,W(F)] = [V(F), W(F)]’

is a verbal subgroup of G as a homomorphic image of a verbal subgroup of F.
a

Many results in various areas of algebra can be expressed in terms of vari-
eties. For example, the negative solution of the Burnside Problem for groups
of exponent n > 667 by S.I. Adyan and P.S. Novikov means that the variety
of groups of exponent n is not locally soluble. A.I. Kostrikin’s positive solu-
tion of the Restricted Burnside Problem for groups of prime exponent p means
that all locally finite groups of exponent p form a variety; this fact follows
from A.I Kostrikin’s Theorem stating that the variety of (p — 1)-Engel Lie
algebras of characteristic p is locally nilpotent. There are also specific varietal
arguments, which can sometimes be very useful.

Example 1.52. Suppose that we succeeded in proving that all groups in
a variety Uw are periodic, that is, have no elements of infinite order. Then, in
fact, there is a bound n = n(Ww) for the orders of elements in V. Indeed, a
free one-generator group F' = (z;) in Yy is periodic: 27 =1 for some n € N.
Then g™ =1 for all g € G for any G € U, since the mapping z, — g extends
to a homomorphism of F' into G.

Similar arguments can be applied to get a bound for the derived length of
all groups in a variety all of whose groups are soluble, or for the nilpotency
class, if all groups in the variety are nilpotent. In Chapter 3 we prove a less
obvious varietal criterion for a variety to be soluble.
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Exercises 1

. Prove that |HK| = |H|- |H|/|H N K| for any two subgroups K, H of a

finite group (although HK need not be a subgroup).

. Prove that any subgroup containing [G, @] is normal in G. [Hint: Use the

correspondence for normal subgroups by the Homomorphism Theorems
and the fact that all subgroups of an abelian group are normal.]

. Prove that Z(G) is always a characteristic subgroup of G. Show that the

centre of the direct product Sz x (a) of the symmetric group on three
symbols and a cyclic group of order |a| = 2 is not fully invariant.

. Prove that |G: HN K| < |G: H|- |G : K| for any subgroups H,K < G.

Deduce that the intersection of n subgroups of index at most m has index
at most m".

Prove that if H is a characteristic subgroup of a group G, then both
N¢(H) and Ce(H) are characteristic subgroups. Is the same true for fully
invariant instead of characteristic?

Show that the mapping ¢ — 7,, where 7, is the inner automorphism of
a group @ induced by g € G, is a homomorphism of G into Aut G with
kernel Z(G).

Prove that if, for a given prime p, there is only one Sylow p-subgroup P
in a group G, then P is fully invariant (and hence characteristic) in G.

Suppose that N is a normal subgroup of a finite group G such that
(IN], |G : N|) = 1. Prove that N is characteristic in G.

. Prove R. Remak’s Theorem: if N and M are normal subgroups of a group

G, then G/(M N N) is isomorphic to a subgroup of the direct product
G/M x G/N. [Hint: Consider the mapping g — (gM, gN).] Deduce that
if both G/M and G/N are abelian, then G/(M N N) is abelian; if both are
of exponent dividing n, then so is G/(M N N); if both are torsion-free, then
so is G/(M N N). More generally, if {M; | i € I}, is a family of normal
subgroups of a group G, then G/;¢; M; is isomorphic to a subgroup of
the Cartesian product Cr;e; G/M;.

Suppose that both a group G and its normal subgroup N are subgroups
of the direct product H; x H, such that both the projection of G and the
projection of N on H; coincide with H;, for each i = 1, 2. Prove that G/N
is abelian.

Prove that the set Q; = {m/2" | m € Z, n € N} is a subgroup of the
additive group of Q. Prove that if Q, = (M), then Q, = (M \ {m}) for
any m € M.
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Exercises 1 25

Suppose that a group G = (M) is generated by a subset M. Prove that
Z(G) = Nmem Ca(m).

Suppose that a group G = (M) is generated by a subset M, If mym,; =
mam, for any my,my; € M, then G is abelian.

Prove that if G/Z(QG) is cyclic, then G is abelian.

Let p be a prime; suppose that a group G of order p™ acts on a set M
of order coprime to p. Prove that there is at least one fixed point for G
on M.

Show that a group of order greater than 6 with a subgroup of index 3 must
have a proper non-trivial normal subgroup. [Hint: Use 1.22.]

Suppose that H is a subgroup of finite index in a torsion-free group G.
Prove that K N H # 1 for every non-trivial subgroup K # 1.

For a finite abelian p-group P, use the dimensions of the Q;1,(P)/Qu(P)
to prove the uniqueness of the cyclic decomposition of P. [Hint: Show
that dim (Qi41(P)/Q:(P)) is equal to the number of the cyclic summands
of order > pt1)]

Prove that any group G acts by conjugation on the set of its subgroups.
What is the stabilizer of a point H?

Prove that if H is a proper subgroup of a finite group G, then G # Uyee HY-

Suppose that A and B are abelian groups of exponents m and n, respec-
tively, such that (m,n) = 1. Regarding A and B as Z-modules, prove that
ARz B=0.

Prove that the tensor product V ® U of two vector spaces over a field k of
dimensions s and ¢ is a vector space of dimension st.

Suppose that [G,G] < Z(G) in a group G. Let the abelian groups A4 =
G/|G, 3] and [G, G] be regarded as Z-modules. Prove that a ® a’ — [a, @]
is a homomorphism of A ® A onto [G, G).

Suppose that every group G in some variety of groups U satisfies the law

[z,¥,-.. ,y] = 1 for some n = n(G). Prove that there exists ng such that

all groups in 0 satisfy the law [z,y,... ,y] = L.

no
Suppose that 91 is some variety of groups, G € 9t and N is a normal
subgroup of G such that G/N is a free group in 9. Prove that there is a
subgroup H < G such that G = NH and HN N = 1. [Hint: Choose some
preimages g; of the free generators §; of G/N and consider the homomor-
phisms given by ¢g; — §; and §; — g;.]



Chapter 2

Automorphisms and their fixed points

First, semidirect products are used to represent both a group and its au-
tomorphisms within a larger group. Then we discuss how automorphisms of
abelian groups may be regarded as linear transformations; the Jordan Normal
Form Theorem is applied to produce important lemmas about fixed points.
Finally, we consider induced automorphisms of factor-groups and their fixed
points.

§ 2.1. Semidirect products

Suppose that a group G is a product G = NH of a normal subgroup
N and a subgroup H with trivial intersection H N N = 1. Then G is the
internal semidirect product of N and H. Every element ¢ € G has a unique
representation in the form ¢ = nh, n € N, h € H. Indeed, if nikh; = nah,,
then N 3 ny'n; = hyhi' € H, where both sides are trivial since HN N =1,
and hence n, = ny and h; = hy. Since N is normal, every element h € H
acting on N by conjugation induces an automorphism ¢(h) = 74|, of N. Since
(zhr)he = zM* for any z € N, hy, h, € H, the mapping ¢ : H — Aut N is a
homomorphism.

Conversely, suppose that a group H acts as a group of automorphisms on
a group N (not necessarily faithfully), which means that there is a homo-
morphism ¢ : H — Aut N. Then we can form the ezternal semidirect pro-
duct of H and N, denoted by N X H (or N x H), which is the set of pairs
N XN H ={(n,h) |n €N, he€ H} with multiplication defined as follows:

-1
(na, b) - (g, ha) = (mnf®™ ), hyhy). (2.1)

(The idea is to deal with pairs (n, h) as if they were products of elements n € N

and k € H in a larger group, with the action of H by conjugation on a normal
-1
subgroup N: then we would have nyh; - nohy = mhinghT hihg = nln:‘ hihy,

-1

with nln:‘ = nlnf(h‘—l) € N and hyh; € H.)
Lemma 2.2. The set N X\ H is a group with respect to the operation (2.1).

Proof. We check that the group axioms are satisfied. Indeed, (1, 1) is

obviously the neutral element. To find the right inverse for (ni, hy), we need
-1

(1, 1) on the right in (2.1), that is, ik, =1 & hy = k! and nlnf(h‘ ) =1 =3

ny = (ny1)#(®), Similarly, the left inverse can be computed for (ng, hy): the
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right-hand side in (2.1) is (1, 1) @ h, = k3" and n; = (ny')**"), It remains
to verify the associative law; we have

((nl, hl) . (nz,hz)) : (na, ha) = (nlnf(h;l), hlhz) . (na,ha)

= ("1n;(h;l)n§(h;lh;l), hyhahs).

On the other hand,
-1
(m, h) - ((n2, ha) - (na, ha) = (n1, ) - (nang®3)) hoho)
= (m(nang® )0, b hahs)

= (nl n;(’h—l )ng(h;l h;1)7 hl h2 h3) )

where we used the facts that ¢ is a homomorphism and ¢(hy!) € Aut N. The
results are the same, as required. ]

Note that the structure of N X\ H depends not only on N and H but also
on the homomorphism ¢ (so the notation N X\ H is ambiguous). In other
words, if H acts in another way as automorphisms of N, then the resulting
semidirect product is different. For example, let {a) be a cyclic group of order
4, and let (b) be a cyclic group of order 2. If (b) is the automorphism of N of
taking inverse elements, a®®) = !, then the semidirect product (a) X (b) is
a non-abelian group, the so-called dihedral group Ds of order 8. If, however,
we put ¢(b) = 1, that is, if (b) acts trivially on N, then (a) X (b) is an abelian
group, the direct product of (a) and (b). The latter is true in general: if
@(H) = 1 in the construction above, then N X\ H is isomorphic to N x H.
Another special case is where H acts faithfully as automorphisms on N, that
is, Ker ¢ = 1; here, again, the product depends on the embedding ¢, since
there may be different subgroups in Aut N isomorphic to H. When we use
semidirect products N X H, it will usually be clear from the context how H
acts on N.

It follows from (2.1) that the subset N = {(n,1) | n € N} is a subgroup
isomorphic to N; moreover, N is normal in N X\ H , since

(nl,hl)_l(n7 1)(n17h1) = ((*7h1_1)(*7 1))(*ah1) = (*7 hl_l)(*7h1) = (*7 1)7

where the star denotes some elements in N. Next, the subset H = {(1, k) |
h € H} is a subgroup isomorphic to H. Since (n, 1)(1, k) = (n, h), we have
NXH= NI:I, it is also clear that NN H = 1. Therefore, N\ H is an internal
semidirect product of N and H. It is natural to identify H with H and N
with N and consider both H and N as subgroups of N X\ H, which can then
be denoted simply by N H. Under this identification, the action of & € H by
conjugation on N coincides with the automorphism ¢(h): for alln € N

R'nh = (1, RY)(n, 1)(1, k) = (*®, A71)(1, k) = (n?®), 1) = ne®),
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In other words, 7|n = @(h); this justifies the notation n® for n#(®),

We saw already that any external semidirect product can be regarded as
an internal one; the converse is also true (and going back produces the same
group).

Lemma 2.3. Suppose that a group G is an internal semidirect product
G = HN where N 4G and NNH = 1. Then G is isomorphic to the external
semidirect product N X\ H with respect to the homomorphism ¢ : h — =,

Proof. We saw above that every element of G has a unique representation
in the form nh, where n € N, h € H. Hence the mapping ¢ : nh — (n, k)
of G onto N X\ H is a correctly defined bijection, It remains to show that o
preserves the operation: for any ny,n; € N, hy, hy € H, we have

-1
(nlhlnghg)“ = (nl(hlngh;l)hlhg)" = (nlngl hlhz)a

-1
= (nln;‘ N hlhg) = (nl,hl)(ng, hg) = (nlhl)“(nghg)".
g

We shall freely use the equivalence of external and internal semidirect prod-
ucts. In particular, the automorphism group of a group G will be considered
as a subgroup of the natural semidirect product G X\ Aut G. In general, when-
ever a group A acts as automorphisms on a group G, we shall regard A as a
subgroup of the semidirect product GA = G X A. In this way other notation
introduced earlier can be used, such as

Cola)={9€G|g*=g} and [G,a]=([g,a]|g€G)=<g_1g“|gEG>.

For a € A, elements of the subgroup C¢(a) are often called fized elements or
fized points of a. A subgroup H < G is a-invariant if and only if a € Ng4(H),
which is equivalent to [H,a] £ H by Lemma 1.16. By Lemma 1.3, if H is an
A-invariant subgroup of GA, then Cg(H) is A-invariant too.

Example 2.4. Suppose that ¢ € AutG. Then Cgi(p™) is a p-invariant
subgroup, since Cg(¢™) = Ce({(¢™)) and (™) is a p-invariant subgroup.

A semidirect product N X H is often called a split extension of N by H.
Any group K with a normal subgroup N and the factor-group K/N = H is
called an eztension of N by H. But not every extension splits (and there may
be both split and non-split extensions for the same N and H). For example,
the dihedral group Ds is a split extension of a cyclic group of order 4 by a
group of order 2; so is also their direct product. But a cyclic group of order 8
is a non-split extension of a cyclic group of order 4 by a group of order 2 (and
so is the non-abelian quaternion group Qs, defined below in §2.3).
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§ 2.2. Automorphisms as linear transformations

Suppose that G is a group of automorphisms of an abelian group V' which
we regard as a right ZG-module. Then G (and the group ring ZG) is also
a subset of Homgz V, the ring of all endomorphisms of V. More generally, if
G acts as automorphisms on an abelian group V, there is a homomorphism
of ZG into HomzV. With some abuse of notation, we can regard G as a
subset of Homgz V, where Z-linear combinations of elements of G are defined
by a(g £ h) = ag £ ah for any g,h € G, a € V. The value of an integral
polynomial apz™ + @;2™"! + -+ - + a,, on an element g € G is defined to be
agg™+a19g™ 1+ - +anl, where 1 is simultaneously the identity mapping of V
and the neutral element of G. For example, if g" = 1 for g € G, then g as a
linear transformation of V' is a root of the polynomial ™ —1. This is, of course,
similar to the situation, where G is a subgroup of GL(V) for a vector space
V so that the elements of G are non-singular linear transformations of V. If
V is a KG-module for some commutative associative ring K with unity, then
we have a homomorphism of KG into Homg V, and we can similarly take
K-linear combinations of elements of G, or values of polynomials from K|z]
on the elements of G, meaning their images in Hom g V.

Recall that an elementary abelian group E of prime exponent p can be
viewed as a vector space over F,, the field of p elements (of residues modulo
p, say). Then the automorphism group Aut E can be viewed as GL(E), the
group of non-singular linear transformations of E. The Jordan Normal Form
Theorem can be used to establish a connection between the rank of a finite
abelian p-group and the number of fixed points of its p-automorphism. First
we recall this fact from courses on linear algebra.

The Jordan Normal Form Theorem. Suppose that 1 is a linear trans-
formation of a finite-dimensional vector space V' over a field K. If all eigen-
values of ¢ belong to K, then V has a basis with respect to which the matriz
of 1 is in the Jordan normal form, that is, block-diagonal diag(Jy,. .. , Js) with
Jordan blocks J; of the form

where the X; are eigenvalues of 1 (not necessarily distinct).

Recall that the characteristic of a field, if positive, is always a prime num-
ber. We can now prove the following theorem.

Theorem 2.5. Suppose that ¢ is an element of GL(V) of order p™, where
V is a finite-dimensional vector space over a field K of characteristic p > 0.
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Then all eigenvalues of ¢ are equal to 1, and V has a basis with respect to
which the matriz of ¢ is in the Jordan normal form, with blocks of the form

all having size at most p™ X p" including at least one of size greater than
p'n.—l X p'n,—l'

Proof. Since ¢*" = 1 by the hypothesis, ¢ is a root of the polynomial
zP" — 1. Over a field of characteristic p, we have (z — 1)*" = z?" — 1. Thus,
the minimal polynomial for ¢ divides (z — 1)?", and hence all eigenvalues of ¢
are equal to 1 (and, of course, 1 € K. By the Jordan Normal Form Theorem,
V has a basis with respect to which the matrix of ¢ is in the Jordan normal
form, with blocks of the form

Taking the mth power of a block-diagonal matrix is equivalent to taking
the mth powers of the blocks. Easy induction on m yields

L W (1) G
Lo 1 (_':)

(here ('Jn) = 0 for all § > m). Let m = p* for some s € N. It can be easily

s

shown that (”:) is a multiple of p whenever ¢ < p*, while (:,) = 1. It is clear

now that if the size of any of the blocks is greater than p™ x p*, then ¢?" # 1,
contrary to the hypothesis. If the sizes of all blocks were at most p™~! x p™~1,
we would have ¢*" ' = 1, a contradiction with the equality || = p™. a

Now we derive a corollary on the dimensions of the vector spaces.

Corollary 2.6. Under the conditions of Theorem 2.5, dimV < dp®, where
d = dim Cy(p) and Cv(p) = {vE V |vp =0}
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Proof. In the chosen basis, according to the block structure of the Jordan
normal matrix of ¢, we have V = @, U;, where each U; is a p-invariant subspace
such that the matrix of |y, is a Jordan block of size at most p* x p*. The
dimension of Cv(¢) is equal to the sum of the dimensions of the Cy,(y), since
Cyv () = ®: Cu.(p).

We claim that dim Cy,(¢) = 1 for all ¢. Indeed, the coordinates of the
vectors in Cy;(p|y;) with respect to the chosen basis of U; are exactly the
solutions of the system of linear equations

11 01
- 0
o1

1 0

8
]
8
8
Il

)

where £ = (z1,... ,24), d; =dimU;. The rank of the system is d; — 1, so that
the dimension of the space of solutions is exactly 1. As a result, d = dim Cy ()
is equal to the number of the U, so that dimV = Z‘fﬂ d;. Since d; < p™ for
all ¢, we have dim V < dp", as required. g

Now we derive a corollary for groups.

Corollary 2.7. Let p be a prime number and let ¢ be an automorphism of
order p* of a finite abelian p-group A. If |Ca(p)| = p™, then the rank of A is
not greater than mp",

Proof. Since Q;(A) is a characteristic subgroup of A, it is -invariant.
Using additive notation, we consider Q,(A) as a vector space over the field F,
of p elements and ¢ as a linear transformation of ,(A). Since |Cg,(4)()| <
|Ca(®)| = p™, we have dim Cgq,(4)(¢) < m. The order of the restriction of ¢
to 0,(A) is a divisor of p*. Corollary 2.6 yields dim,(A) < mp™. But the
dimension of Q;(A) is exactly the rank of ,(A) as an abelian p-group, which
coincides with the rank of A itself (see §1.1). a

We can say something also in an infinite-dimensional situation, or for an
infinite abelian p-group.

Corollary 2.8. (a) Let ¢ be an element of GL(V) of order p*, where V is
a vector space over a field of characteristic p > 0. Then Cy(p) # 0.
(b) Let ¢ be an automorphism of order p™ of an abelian p-group A. Then

Calp) # 1.

Proof. (a) Pick an arbitrary non-zero element v € V; then the span U
of the (p)-orbit {a, a®,..., a®" '} is a non-trivial ¢-invariant subspace of V
of dimension at most p*, By the finite-dimensional Corollary 2.6, we have

0 < dimU < dp™, where d = dim Cy(p); hence d # 0 and 0 # Cu(p) < Cy(p).
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(b) Again, consider ©;(A) as a vector space over the field F,, of p elements
and ¢ as a linear transformation of €,(A). The result follows from (a). a

Note that for finite p-groups a different argument easily yields a stronger
result:

Lemma 2.9. Let p be a prime, and suppose that A is a group of order p™
acting as automorphisms on a group P of order p™, for some m,n € N. Then

Cp(A) # 1.

Proof. It suffices to consider the orbits of A on P: their cardinalities
should divide |A| = p™, and there is at least one one-element orbit consisting
of the identity element of P. Since the sum of the cardinalities of the orbits is
|P| = p™, the divisibility argument shows that there must be other one-element
orbits, which consist precisely of non-trivial elements of Cp(A). a

§ 2.3. Induced automorphisms of factor-groups

Suppose that ¢ € Aut G and N is a normal ¢-invariant subgroup of G.
The mapping @ : Ng — (Ng)? is an automorphism of the factor-group G/N.
Indeed, the mapping is well-defined, since (Ng)? = N¥g¥ = Ng* is again a
coset of N. It is a bijection, since (Ng)* = (Nh)? implies that (gh™')* € N

& gh™' € N = N, and Ng = ((Ng)*™")® for all g, h € G. Finally, the

operation is preserved:
(Ng- Nh)? = (Ngh) = N(gh)* = Ng*h? = Ng*Nh* = (Ng)?(NR)®.

The automorphism @ of G/N is called the induced automorphism of G/N. One
can say that (p) acts on G/N as a group of automorphisms (not necessarily
faithfully); the order of @ divides the order of ¢. It is usual to denote @ simply
by ¢, when it is clear which factor-group is taken and no confusion arises. On
the other hand, @ may denote the image of ¢ in the factor-group G(¢)/N;
then (@) acts as automorphisms on G/N, but not necessarily faithfully.

How are the fixed points of the induced automorphism @ related to the
fixed points of ¢? Of course, the image of a fixed point of ¢ is a fixed point
of @, that is, Cg(p)N/N < Cg/n(@). The reverse may not hold, though.

Example 2.10. One can check that the mapping ¢ : v = v, v - u
extends to an automorphism of the quaternion group

2

3
Qs = {1, u, v?, u®, v, wo, v?v, v¥v | v =0 = 1; W? =% W’ =4’}

Then (u?) is a normal ¢-invariant subgroup (for example, as the derived sub-
group of Qg). Let a bar denote images in the factor-group Qs/(u?); then
Qs/{u?) is the direct product (Z) ® () of two cyclic groups of order 2. The in-
duced automorphism @ interchanges the factors, and hence @7 is a fixed point
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of . But this fixed point of @ is not an image of any fixed point of ¢, since
Cqs () = (u?), as can be easily checked.

The phenomenon of an “uncovered” fixed point cannot occur if the order
of an automorphism ¢ € Aut G is coprime to the order of the finite group G.

Lemma 2.11. Suppose that ¢ is an automorphism of finite order n of
a group G and N is a finite normal @-invariant subgroup of G such that

(IN|,ll) = 1. Then Con(®) = Ca(p)N/N.

Proof. We need only prove the inclusion Cg/n(@) < Ca(p)N/N. In other
words, we need to find an element of Cg(¢p) in every y-invariant coset giN
of N. We proceed by induction on |¢|. Suppose first of all that || = p is
a prime number. Consider the action of (@) on the set gN, The sizes of the
(ip)-orbits on gN divide |¢| = p by 1.20 and hence are either p or 1; the disjoint
union of these orbits is g¢/N by 1.18. If all orbits were of size p, then p would
divide |gN| = |N|, a contradiction with the hypothesis (|N|, [p|) = 1. Hence
there must be at least one orbit of size 1, consisting of a required element from
Co(p) NgN.

Now let || = mn be a composite number with m > 1 and n > 1. By the
induction hypothesis we have

Com(¢™) = Cal¢")NIN = Co(¢™)/(Cal¢™) N N).

The ¢-invariant coset gV is ¢"-invariant and hence there exists go € Ci(p™)
such that goN = gN. Now g§ € goN, and g§ € Cq{p™) since Cg(p") ie
p-invariant (Example 2.4). Hence g5'g¢ € N N Cg(¢™), that is, the coset
90(Ca(¢™) N N) is also p-invariant. But ¢ acts as an automorphism of order
n on Cg(¢™); hence, by the induction hypothesis, the coset go(Ca(9™) N N)
contains an element ¢; from Cg(p). This element is what is required, since
90(Ca(p™) N N) C goN = gN. a

It is also possible to restrict the number of fixed points in the general
situation.

Lemma 2.12. Suppose that ¢ is an automorphism of a finite group G and
N is a normal p-invariant subgroup. Then |Con(®)| < |Ca(p)l.

Proof. We consider the action of G by conjugation on the semidirect
product G(yp). The cardinality of ¢, the G-orbit containing ¢, is equal to
|G : Ce(p)| by Lemma 1.9, since Cg(¢p) is the stabilizer of the point ¢. Let a
bar denote the image in G(p)/N. For the same reasons, we have

o GN_gl
0% =16 Cal@)l = o @ = N ICom @)l
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But $9 = @?N for any g € G, which means that every element of the G-orbit
@Y is the image of an element from ¢ under the natural homomorphism. At
most |N| elements can be mapped onto a given element in G{p)/N. Hence
|@C| - IN| > |¢%|. Substituting the expressions for these cardinalities, we
obtain

G _ 16N s 161
ICon(e)l  |Can(e) ~ |Ca()
It follows that |Co/n(p)| < |Ca(N)]. O

Remark 2.13. The result of Lemma 2.11 can be extended to the case
where A is an arbitrary group of automorphisms of a finite group G of order
coprime to the order of an A-invariant normal subgroup N: if (|4], [N|) =1,
then Cg(A)N/N = Cg/n(A). The proof of this extension requires the Schur—
Zassenhaus Theorem and the solubility of either A or N (which is, however,
always true since all groups of odd order are soluble by the celebrated Feit—
Thompson Theorem).

Exercises 2

1. Prove that every semidirect product of the cyclic group of order 15 and the
cyclic group of order 7 is the direct product.

2. Prove that the group of non-singular upper triangular n x n matrices over

a field k,

aq *
T.(k) = *x€k, aj-rran #0

0

is a semidirect product of the group of upper unitriangular matrices

1 k
UT.(k) = xck

0 1

and the group of non-singular diagonal matrices.

3. Prove that |Aut G| # 3 for any group G. [Hint: First reduce to the case
where G is abelian using Exercise 1.14; then reduce to the case where G
has exponent 2 using the mapping z — z~!; finally, view G as a vector
space over F,.]

4. Prove that Z(P) # 1 in any group of prime-power order |P| = p", where p
is a prime and n € N. [Hint: Use Lemma 2.9.]



10.

11.

12.

13.

14.

Exercises 2 35

Prove an analogue of Maschke’s Theorem: if a finite group G acts as auto-
morphisms on a finite abelian group U of coprime order, (|G|, |U|) = 1, then
every G-invariant direct summand of U has a G-invariant direct comple-
ment: that is,if U = V @T with G-invariant V, then there is a G-invariant
subgroup W < U such that U =V @ W. [Hint: Take the kernel of the en-
domorphism of V defined as 27* = ¥ c(2? 7)9"" where 7 is the projection
of U onto V with respect to T.]

Let G be a finite group, ¢ € Aut G, and let (|¢|, |G]) = 1. Suppose that
G has a subnormal series G = G; > ... 2 G, 2 G,41 = 1 of p-invariant
subgroups such that ¢ induces the trivial automorphism on each factor-
group G;/Gi+1, t=1,2,... 5. Prove that o = 1.

In fact, the subnormality condition in the previous exercise is superfluous.
Let G be a finite group, ¢ € Aut G, and let (|¢|, |G]) = 1. Suppose that
Ghasaseries G=G) 2G> ... 2 G, 2 G,q1 =1 such that every coset
of Giy1 in G is g-invariant, for all ¢ = 1, 2,... ,s. (in particular, all G; are
¢-invariant). Prove that ¢ = 1.

. Extend the result of Corollary 2.6 to infinite-dimensional vector spaces

(that is, show that the dimension is necessarily finite).

. Determine the order of the automorphism group of an elementary abelian

group of order p".

Prove that the elementary abelian group E of order p™ has an automor-
phism of order p™ — 1. [Hint: Regard E as the additive group of the finite
field Fyn of order p* and use the fact that the multiplicative group of Fyn
is cyclic.]

Prove that the Jordan normal form of a finite-dimensional linear trans-
formation of order n is diagonal over any field of characteristic coprime
ton (or 0).

Prove that if ¢ and 1 are linear transformations of a vector space such that
Y = 1, then the eigenspaces for ¢ are i-invariant.

Suppose that A is a finite abelian group of linear transformations of a
finite-dimensional vector space V' over an algebraically closed field of char-
acteristic p such that (|A|,p) = 1 (or p = 0). Prove that if V is irreducible,
that is, has no proper A-invariant subspaces, then A is cyclic. [Hint: Use
11 and 12 and the fact that the finite subgroups of the multiplicative group
of any field are cyclic.]

Use 13 to prove that if A is an abelian group of automorphisms of an ele-
mentary abelian p-group E such that (|A|,p) = 1, then E = [14,<4 Ce(41),
where the product is over all proper subgroups A; < A such that A/A, is
cyclic. Deduce that if A is non-cyclic, then also E = [Toea\(1} CE(a). [Hint:
Extend the ground field of E viewed as a vector space.]



Chapter 3
Nilpotent and soluble groups

After establishing some properties of commutator subgroups that hold in
any group, we give the definitions of nilpotent and soluble groups and prove
some of their basic properties. Then we prove a criterion for a variety to be
soluble, and some criteria for soluble groups and varieties to be nilpotent.

§ 3.1. The lower central series

For the definitions of commutators and commutator subgroups, see §1.1.
We begin with one more commutator formula, in addition to those in 1.11.

Hall-Witt Identity 3.1. For any elements a, b,c in any group

[a,671,¢% - [b,c Y, a]° - [c,a™},B]" = 1.

Proof. Expand by the definitions and cancel. ]
This enables us to prove the following important lemma.

Three Subgroup Lemma 3.2. Suppose that A, B, C are subgroups and
N is a normal subgroup in a group G. If [[A,B],C] < N and [[B,C],A] < N,
then [[C,A],B] < N too.

Proof. The images of commutator subgroups in G/N are commutator sub-
groups of the images by (1.14), and the image of a subgroup in G/N is trivial
if and only if the subgroup is contained in N. Hence we may assume that
N =1 = [[A,B),C] = [[B,C],A]. For every a € A, b € B, c € C, the
Hall-Witt Identity 3.1 holds:

[a,b_l,c]b- (6,7, a]° - [c,a™ !, 8] = L.

The first factor belongs to [[A, B],C]® = 1* = 1 and hence equals 1; the second
also equals 1, since it belongs to [[B,C], A]° = 1. Hence [c,a™},}]° =1 =
[c,a™',8] = 1°7" = 1. Replacing a by a~!, we get [c,a,b] = 1 for all a € A,
b€ B, c € C, that is, [c,a] € Cg(B) for all a € A, c € C. Since [C, 4] is
generated by the [c,a] and Cg(B) is a subgroup, we obtain [C, A] < Cg(B),
whence [C, A, B] = 1, as required. a

Corollary 3.8. Suppose that A, B,C are normal subgroups in a group.
Then [[07 A]aB] < [[A7 B]aC] ' [[B,C],A]
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Proof. Commutator subgroups of normal subgroups are normal by (1.14);
hence it suffices to apply Lemma 3.2 with N = [[4, B],C] - [[B,C], A]. a

Definition 3.4. The terms of the lower central series of a group G are,
recursively, the commutator subgroups v1(G) = G, Y1 (G) = [1(G), G).

By induction and by Lemma 1.51, each ~x(G) is a verbal, and hence a fully
invariant, and hence a characteristic subgroup; in particular, v(G) > 7i+1(G)
for all 7. For the rest of the section we put v, = 4x(G), for short. The following
is a corollary of the Three Subgroup Lemma.

Corollary 3.5. In any group G, we have [Ym, Yn] £ Ymen for all m,n € N.

Proof. We prove the inclusion by induction on n (for all m). If n =1, then
[¥m>M] = [Ym, G] = Ym+1 by the definition. For n > 1, we have

[Ga 7ma7ﬂ—1] = [7m+177n—1] < Ymtn

by the definition and by the induction hypothesis, and

[Yms ¥-1, Gl < Ymtn-1,G] = Ym4n

by the induction hypothesis and by the definition. By the Three Subgroup
Lemma 3.2, we have also

[Yms Yn) = [¥ns Y] = [Y2-1, Gy Y] £ Yimn-

We prove the following useful, if technical, lemma.

Lemma 3.6. In any group G, for every k € N,
(a) 4 contains all commutators of weights > k in the elements of G,

(b) 7 is generated by the simple commutators of weight k in the elements
of G,

(c) if G = (M), then y; is generated by the simple commutators of weight
> k in the elements m*, m € M.

Proof. (a) Since ; > #i4 for all 7, it suffices to show that every commutator
of weight k belongs to 4x. Induction on k; for k¥ = 1 all elements of G are
contained in 73 = G. A commutator c of weight k¥ > 1 is equal to [c, cy),
where ¢, and c; are commutators of weights w;,w; > 0 with w; + wy = k.
By the induction hypothesis, ¢; € 7y, and c; € 4.,,. By Corollary 3.5, ¢ =
[Cla CZ] € [71»1,71»2] < Y +wy = Ve

(b) We define the subgroups Ny = {[g1,...,9%] | 9 € G); by (a), Nx < n,
so we need only prove that 4, < N;. Induction on k; for k = 1 we have
m = G = N,. Let now k > 1. Since [g1,...,9x° = [g,... , 93] € N
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for any ¢ € G by (1.14), Ny is a normal subgroup. For any ¢ € G and
any generator [g1,... ,gk—1) of Ni_,, we have [[g1,... ,9%-1],9] € N, whence
the image of [g1,... ,9%k-1] in G/N; belongs to the centre. Hence the image
of Nj—1 lies in the centre of G/Ny, that is, [Nk-1, G] £ Ni. By the induction
hypothesis, we obtain v; = [yk-1, G] < [Ni-1,G] £ Ny

(c) Using (b), we substitute into g1, ... , gi] expressions for the g; as prod-
ucts of the elements m*!, m € M. Then we use repeatedly the formulae 1.11,
[ab,c] = [a,d][a,c,b][b,c] and [a,bc] = [a,d][a,b][a,b,c], until we arrive at a
required product of simple commutators of weights > k in the m*!, m € M.

a

We knew already that 44 is a verbal subgroup, but now Lemma 3.6(b) tells
us that 7 is verbal with respect to the single word [z;,... ,z3].

§ 3.2. Nilpotent groups

There are several equivalent definitions of nilpotent groups; we need an-
other central series for one of them.

Definition 3.7. The terms of the upper central series of a group G are
defined recursively: (1(G) = Z(G) is the centre of G, and (i41(G) is the full
inverse image of Z(G/{x(G)) in G.

We write v; = 7:(G) and {; = (;(G) throughout the section.

Definition 3.8. Asertes G=G, > Gy > ... > G. > G4 =1 is central,
if [Gi,G) € Giyq forallt =1,2,... ,c (it follows that then each G; is normal).

Now we give equivalent definitions of nilpotent groups.

Theorem 3.9. For a group G, the following are equivalent:

(a) Yet1 = 1
(b) G has a central series of length c;

)
(C) [gth, .. 7gc+1] = ]- fOT‘ all 9i (S G,
(d) ¢

Proof. By Lemma 3.6(b), we have (a) & (c). The lower central series is
central by the definition, so (a) = (b). To prove (a) < (b), we show that
7 < G; for the G; as in 3.8. (So the “lower” central series is the most rapidly
descending one.) Induction on i; for i = 1 we have ;3 = G = Gy4. For ¢ > 1,
we have 7; = [%-1,G] £ [Gi-1,G) £ G; by the induction hypothesis. Then
Ye+1 < Gc+1 =1.

The upper central series is central by the definition, so (d) = (b). To prove
(d) <= (b), we show that {; > G.i41 for the G; as in 3.8. (So the “upper”
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central series is the most rapidly ascending one.) Induction on ¢; for i = 1 we
have (; = Z(G) > G. since [G.,G] = 1. For i > 1, we have (i-; > G._iy2
by the induction hypothesis; then the inclusion [G.—iy1,G] £ Gemiv2 < (i
implies that the image of G.—;+1 in G/(;_, is contained in the centre, which
means that {; > G.—;;1. Then {, > G, = G. O

Definition 3.10. If a group G satisfies the conditions in Theorem 3.9 then
G is nilpotent of class < c; the least such number c is the nilpotency class of G.
(A group is often said to have nilpotency class c if it has nilpotency class < ¢.)

Remark 3.11. The definition and Theorem 3.9(d) imply that a group G
is nilpotent of class ¢ > 1 if and only if G/Z(G) is nilpotent of class ¢ — 1.

The definition and Theorem 3.9(c) mean that the nilpotent groups of class
< ¢ form a variety of groups, usually denoted by M.. Therefore, according
to the general theory (see §1.3), all subgroups, all homomorphic images, and
all Cartesian products of nilpotent groups of class < ¢ (that is, from .)
also belong to M.. A free nilpotent group of class c is the factor-group of an
“absolutely” free group F' by the verbal subgroup 7.41(#). (We shall obtain
more information on the structure of F' and F/v.41(F) in Chapter 9.)

Suppose that all groups in some variety of groups U are nilpotent; then,
in fact, there is an upper bound for the nilpotency classes of all groups in 2,
that is, U is contained in M, for some ¢ € N. Indeed, a countably generated
(relatively) free group in U is nilpotent of some class ¢ by the hypothesis; hence
all groups in 'Y are nilpotent of class < ¢ by Lemma 1.50.

We shall later consider varieties of algebraic systems that are groups with
additional operations. By definition, such a system is nilpotent of class < ¢
if it satisfies the law [z1,...,Z.41) = 1 (there may be difficulties with other
equivalent definitions, because of other operations). The varietal arguments
from the two preceding paragraphs apply to such systems too.

A nice (and, probably, unique) feature of the nilpotency identity is that it
need be verified only on the generators of the group.

Theorem 3.12. Suppose that G = (M). Then G is nilpotent of class < ¢
if [m1,... ,mep1] =1 for any m; € M.

Proof. Induction on ¢; if ¢ = 1, then by the hypothesis all generators of G
commute, whence G is abelian, as required. Let ¢ > 1. Since [my,... ,m.,m] =
1 for any m € M, the commutator [m,,... ,m; commutes with all generators
of G and hence with all elements of G; in other words, [m1,... ,m;] € Z(G),
for any m; € M. By the induction hypothesis, G/Z(G) is nilpotent of class
< ¢ — 1 (the factor-group G/Z(G) is generated by the image of M and the
images of commutators are commutators of the images). Then G is nilpotent
of class < ¢ by 3.11. g
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Corollary 3.13. Suppose that G is a nilpotent group of class c; then, for
any g € G, the nilpotency class of the subgroup (g,[G,G]) is at most c — 1.

Proof. The subgroup (g,[G,G]) is generated by g and the commutators
[k1, k2], b1, h2 € G. Every commutator of weight c in these generators has
weight at least ¢+ 1 in the elements of G, unless all of its entries are g; in any
case, 1t is trivial. The result follows from Theorem 3.12. g

The following theorem collects some elementary properties of nilpotent
groups, easily derived from the definition.

Theorem 3.14. Suppose that G is a nilpotent group of class ¢, H is a
subgroup of G and N is a normal subgroup of G. Then
(a) if N#1, then [N,G] < N;
) if N#1, then NN Z(G) # 1 (in particular, Z(G) # 1, if G # 1),
) H is a member of a subnormal series of G of length c;
(d) i H[G,G] =G, then H = G
) if H # G, then Ng(H) > H.

Proof. (a) If [N,G] = N, then repeated substitution yields

N = [NaG] = [[NaG]aG]= e = [[NaG]a aG] <Yep1 =1,

a contradiction to the hypothesis N #£ 1.
(b) Choose s € N to be the least with [...[N,G],...,G] = 1 (such an s
N, e’

exists since G is nilpotent). If s = 1, we have simplysN < Z(G). Ifs>1,
then 1 # [...[N,G],... ,G] < Nn Z(G).
N e’

s—1
(c) For a subnormal series of length c containing H, we can take

G=H7IZH722...ZH7CZH’7¢+1=H.

To show that Hy,. < Heys, it is sufficient to show that both H and #, are
contained in Ng(H~;41). This is clearly true for H < H~,;,. For 7, we have
[737H73+1] < [787G] = Y541 £ HY,4a, 50 that 4, < NG(H73+1) by 1.16.

(d) Induction on c, the nilpotency class of G. For ¢ =1 we have [G,G] =1
and the result follows. For ¢ > 1, consider the factor-group G/Z(G), which is
nilpotent of class ¢ — 1. The hypothesis holds for the images of H and [G, G];
hence, by the induction hypothesis, the image of H coincides with G/Z(G). In
other words, HZ(@) = G; in particular, H is normal in G, being normalized
by both H and Z(G). Since [Z(G),G] = 1, we have by 1.17

[G,G] = [HZ(G), HZ(G)] = [H, H][H, Z(G)][2(G), Z(G)] < H.
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As aresult, G = H[G,G)] = H, as required.
(e) This follows from (c). O

By a theorem of J. Roseblade [1965], if, for some s € N, every subgroup
of a group G is contained in some subnormal series of length s, then G is
nilpotent of s-bounded class; this is a kind of converse of (c). The converses of
the other parts of Theorem 3.14 may not be true, but may be used to define
some generalizations of nilpotent groups.

Corollary 3.15. Suppose that G is a nilpotent group. Then
(a‘) Yi > Yig1 unless ¥i = ]_,
(b) Ci < CH.] unless Cz =G

Proof. The assertion (a) follows from Theorem 3.14(a); and (b) follows
from Theorem 3.14(b) applied to the nilpotent factor-group G/¢;. g

We shall later need some properties of torsion-free nilpotent groups and
divisible subgroups in nilpotent groups. The following lemma shows that ex-
tracting roots (if possible) is a well-defined operation in a torsion-free nilpotent
group.

Lemma 3.16. If z" = y™, for some n € N, for elements z,y of a torsion-
free nilpotent group H, then z = y.

Proof. Induction on the nilpotency class c of the group. If ¢ = 1, the group
is abelian and we have 2" = y" = (zy )" =1 = zy ! =1 = z = y. Now let
¢ > 1. We have (z¥)* = (2™)¥ = (y")Y = y™ = z". The elements z¥ = z[z, y]
and z are both in the subgroup (z)[H, H], which is nilpotent of class < c—1
by Corollary 3.13. Hence, by the induction hypothesis, we have 2¥ = z, which
means that z and y commute. Then (zy~!)" = 2"y~ = 1, whence, since the
group is torsion-free, zy~! = 1, that is, z = y. ]

A group G is divisible, if, for every k € N and every g € G, there is a kth
root of g in G: an element h € G such that A* = g. An example: the additive
group of Q. It is clear that every homomorphic image of a divisible group is
also divisible. We prove here the following technical lemma.

Lemma 3.17. Suppose that H is a divisible subgroup of a nilpotent group G.
Then the normal closure (H) is a divisible group too.

Proof. Induction on the least integer s such that [H,G,... ,G] = 1. If
s=1, then H < Z(G) and (H®) = H. s

Before making the induction step, we prove that for a fixed go € G and
a subgroup U < G the mapping u[U,G] — [v,4][U,G,G] is a homomor-
phism of U[U,G]/[U,G] into [U,G)/[U, G, G]. 1t is well-defined: for v € [U,G]
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we have [uv,go] = [, go][u, go,v][v, 9] € [u,9][U,G,G]. The operation is
preserved: for u;,u; € U we have [ujus, go] = [u1, go][u1, o, ua][uz, go] €
(%1, go][u2, 90][U, G, G]. In addition, it is clear that [U,G]/[U, G, @] is gener-
ated by the elements [u, g][U,G,G), v € U, g € G.
The above-defined homomorphisms of [H, G, ... ,G]/ [H,G,...,G] into
N — N oo’

=1 i

[H,G,... ,G]/[H,G,... , G] show that
\--.w \-—w

0 t+1
N=[H,G,...,G]=H,G,...,G] [ [H,G,...,G]
s—1 s—1 8

is a subgroup of Z(G) generated by the elements [h,g,...,9,21], b € H,
g € G,and [A™, ¢1,... ,9s—1] = [h,91,... , gs—1]™ for them. Since H is divisible
and N is abelian, it follows that N is divisible too.

Since HN/N 1is a divisible subgroup in G/N, by the induction hypothesis
its normal closure is divisible. The full inverse image of this normal closure is
(HP)N = (H®), since N < [H,G] < (H®). Now for any a € (H°) and any
n € N there is b € G such that aN = "N, that is, ¢ = b"z for some z € N.
But N is divisible as shown above, so there is z; € N such that z = z}. As a
result, a = b"z} = (bz1)", since z; € N < Z(G). a

We shall derive more properties of nilpotent groups using the associated
Lie rings in Chapter 6. Most of them can be obtained by group-theoretic
calculations as well, but we shall need the associated Lie rings anyway.

§ 3.3. Soluble groups and varieties

Apart from standard material, we prove here a criterion for a variety to be
soluble.

Definition 3.18. The terms of the derived series of a group G are defined
recursively to be G!) = [G, G] and G*+1) = [G(R), G¥)).

By induction and by Lemma 1.51, each G(*) is a verbal and hence a fully
invariant, and hence a characteristic subgroup. It is nice, however, to have a
single word defining a verbal subgroup. Recall that 6;(z1,22) = [z1,2,) and
5d+1(:l:1, e ,.'1:244-1) = [5d(.’l:1, e ,.’1:24), 5d($24+1, e ,.'1:244-1)].

Lemma 3.19. In any group G, we have G®) = (6i(zy,... ,z5) | 2; € G)
for all k € N.

Proof. We denote by N; = (§;(x1,...,%9) | z; € G) the verbal subgroups
in question. Easy induction shows that 8i(z1,... ,2x) € G for every k,
so that Ny < G®). To prove the reverse inclusion, we also use induction
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on k; if k = 1, then GV = [G, G] = ([z1, %3] | z; € G) = N, by the defini-
tions. For k£ > 1, we consider the factor-group G/N;. By the induction hy-
pothesis, (G/Ni)*~1) which equals G*~V N, /N, (by Lemma 1.47), coincides
with Ni_y Ni/Ni. The commutators of any two generators §;_1(z1,. .. ,Zox1)
of Ni_; belong to N; in other words, their images commute in G/N. Hence
the image of Nj_; is an abelian subgroup in G/N;. Then

GBI NN, = (G/N)® = [GEVN, /Ny, GEVN, /N
[Nk—1 N /Ni, Nioa N [Ni| = 1,

IN

that is, G¥) < N, as required. O

Thus, G is a verbal subgroup with respect to Sx(z1, ... ,Zox). We proceed
with equivalent definitions of soluble groups.

Theorem 3.20. The following are equivalent for a group G-

(a) GO =1

(b) é4(z1,...,20a) =1 forall z; € G;

(c) G has a normal series of length d with abelian factors;

(d) G has a subnormal series of length d with abelian factors.

Proof. By Lemma 3.19, (a) « (b). Since the G™*) are all normal and all

factors G(*) /G +)) are abelian, (a) = (c). Clearly, (c) = (d). It remains to
show that (d) = (a). Suppose that

G=G02G12---2Gd—1ZGd=1

is a subnormal series of length d with abelian factors. Then induction shows
that G < G, for all k. For k = 1 this is because G/G, is abelian (see 1.15);
if G < Gj, then

QU = (61, GV < (G}, Gy] < Gim
by the definition and because G;/Gj4. is abelian. a

Definition 3.21. If a group G satisfies the conditions in Theorem 3.20
then G is soluble of derived length < d; the least d to suit Theorem 3.20 is the
derived length of G. (It is often said that a group is soluble of derived length
d if the derived length is < d.) Groups of derived length 2 are often called
metabelian.

It follows from Theorem 3.20(d) that any extension of a soluble group of
derived length a by a soluble group of derived length b is soluble of derived
length a+b, that is, if G = 1 and G/N® = 1, then G(**) = 1. The definition
and Theorem 3.20(b) mean that the soluble groups of derived length < d
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form a variety of groups, usually denoted by 2¢. Therefore, all subgroups, all
homomorphic images, and all Cartesian products of soluble groups of derived
length < d (that is, from 2¢) also belong to 2A¢. A free soluble group of
derived length d is the factor-group of an “absolutely” free group F by the
verbal subgroup F(9.

Suppose that all groups in some variety of groups 2 are soluble; then, in
fact, there is an upper bound for the derived lengths of all groups in 2, that is,
0 is contained in ¢ for some d € N. Indeed, a countably generated (relatively)
free group in Y is soluble of some derived length d by the hypothesis, and hence
all groups in U are soluble of derived length < d by Lemma 1.50.

Suppose we have a variety of algebraic systems that are groups with addi-
tional operations. By definition, such a system is soluble of derived length < d
if it satisfies the law 8;(z1, ..., Z54) = 1 (there may be difficulties with equiva-
lent definitions because of the additional operations). The varietal arguments
from the two preceding paragraphs apply to such systems, too.

In contrast to Theorem 3.12, it may not be sufficient to verify the solubility
law 84(z1,...,Z54) = 1 only on the generators of the group (Exercise 3.7).

Now we prove a useful criterion for a variety to be soluble, which appeared
independently in [E.I Khukhro and I.V.L’vov, 1978] and [Yu. A.Kolmakov,
1984], and, implicitly, in [M. R. Vaughan-Lee and J. Wiegold, 1981]. This crite-
rion has, in fact, a “varietal” nature and holds for various classes of groups and
Lie rings with additional operations. We shall use this criterion in Chapter 7
to prove solubility of some graded Lie rings. But in a book on groups it seems
natural to prove it here.

Theorem 3.22. If every non-trivial group in a variety of groups B is
distinct from its derived subgroup, then the variety is soluble (that is, 0 C A*
for some k).

Proof. Let F be a free group of the variety 0 on countably many free
generators z;, z, .. .. By Lemma 1.50, it is suflicient to prove that F' is soluble.
Suppose the opposite, that F is non-soluble. Let 7 be the homomorphism of F'
into itself extending the mapping z; — [z2i-1,Z2), ¢ =1, 2,.... We consider
the sequence of isomorphic copies Fj of F,

ALRL.. OFLF,5S..., (3.23)

with the “same” homomorphisms 7 such that z] = [z4;_1, z2i], where z; € F;
and g, o € Fj4q for all i, j.

The Cartesian product Crj2, F} consists of all sequences (g1, g2, ---), 9; €
F; (with coordinate-wise operations, see § 1.1). Since 7 is a homomorphism,
all almost T-threads, elements of the form (b, ... , b,, a,a”, a™, ..., at, ... ),
with arbitrary initial segments of finite lengths s € N, constitute a subgroup
H < Cr3Z, F;. Clearly, the set of all elements with only finitely many non-
trivial coordinates is a normal subgroup N of Crj2, F; (in fact, N is the direct



3.3. Soluble groups and varieties 45

product of the F}). The section G = HN/N is called the direct limit of
the spectrum (8.23) (usually denoted by lim F;). It is important that G #

1: for example, the element (z), ], 2]°,...) € H does not belong to N,
because z]" # 1 for all n € N. Indeed, induction on d shows that zI* =
84(z1,... ,54) for all d. So if z]" = 1 for some n, then 6,(z1,...,zzm) = 1,

whence 6,(g1,-.-,927) = 1 for all g; € F, after applying the endomorphism
of F extending the mapping z; — ¢;. This means that the solubility law of
derived length n holds on F', contrary to our assumption that F' is non-soluble.

Given an almost 7-thread (by, ... ,b,, a,a", a™,... ,a"",...), let a = w(z;)
be regarded as a group word w(z;) = w(z,, 3,...) in the z;. Since w(z;)™ =
w(a:JT-k) for all k£ € N, we have

(bry...,bs, @, a", aTZ,. ) =(b,...,bs, w(z;), w(a:JT-), w(a:;z), o)

T T2
=w((l,...,1, z; 2}, 27 ,...)) - (b1y... b, 1, 1,.00).

s

Since (by,...,bs,1,1,...) € N, all elements in G are group words in the
images of the following almost 7-threads: (1,...,1, z;, z7, el ), t € N;in
N e’

FECRI

t
other words, G is generated by their images. For every such thread, we have

2
(1,...,1, 2z, 2], 2] ,...)=(1,..., 1, z; [22i-1, Zai], [Z2i—1, TRs)y - - -)
£ t

= [(1,...,l,a:g,-_l,a:;,-_l,...), (L, L, 294,255, -+) ]-(1,...,1,a:,-,1, 1L...).
t4+1 i+1 t

Since the second factor on the right belongs to N, each of the above generators
of G equals a commutator from [G, G]; hence G = [G, G]. On the other hand,
G belongs to 2, being a section of the Cartesian product of the F; € 0; hence
G # [G, G] by the hypothesis, a contradiction. a

Remark 3.24. Another form of Theorem 3.22: if a variety of groups
is non-soluble, then it contains a non-trivial group which coincides with its
derived subgroup. In this form, it is convenient to state a generalization of
Theorem 3.22 for algebraic systems that are groups with additional operations:
provided f7*(1,...,1) = 1 for all operations f;*, any non-soluble variety 0
of such systems (“non-soluble” here means not satisfying any of the identities
84(z1,...,224) = 1 with respect to the chosen group operation) contains a
non-trivial system which coincides with its derived subgroup. The proof of
Theorem 3.22 can be repeated verbatim, with homomorphisms in the sense
of the algebraic systems and commutators with respect to the chosen group
operation; the condition f;*(1,...,1) =1 ensures that N (the direct product
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of the F;) is a normal subsystem of the Cartesian product of the F;. For ar-
riving at the equality G = [G, (], it really does not matter whether additional
operations were used for forming [G, G] or not.

§ 3.4. Nilpotency criteria for soluble groups
It is easy to see that a nilpotent group is soluble.

Lemma 3.25. In any group G, we have G < 1,4(G). Therefore if a
group G is nilpotent of class < 2F — 1, then G is soluble of derived length < k.

Proof. Induction on d: for d = 1, we have GV = [G, G] = 7,(G); if
G™®) < ~,x(@), then using 3.5 we obtain

G = [G(k)aG(k)] < [72*(G),72k(G)] < ’7’2k+2'=(G) = ’7’2'=+1(G)-
a

The converse may not be true: for example, S; is soluble of derived length
2 (metabelian), but is not nilpotent. Under some conditions, solubility may
imply nilpotency. The following theorem of P. Hall [1958] often facilitates the
use of induction in proving that a soluble group is nilpotent.

Theorem 3.26. Let N be a normal subgroup of a group G. If N is nilpo-
tent of class k and G/[N, N] is nilpotent of class c, then G itself is nilpotent
of class at most f(k,c) = (c— L)k(k + 1)/2 + k.

Proof. Using the fact that G/[N, N] is nilpotent of class c, we prove that
Ytk,e)+1(G) < Y41 (N) for all k € N, where f(k,c) = (c—1)k(k+1)/2+ k. We
proceed by induction on k; for k = 1 the hypothesis gives v.41(G) < 12(N), as
required.

Suppose that 7¢(x,)+1(G) < 7e+1(N). For any s € N, we consider the
commutator subgroup

YViko+s+1(G) = [ke+1(G), G, ..., G]

3

[7k+1(N)aGa .- ,G]

IN

E+1 s

Repeated application of Corollary 3.3 gives

[Nv"'vNaG] < [[NaG]aN,--',N]'[N»[NaG]»N»-“,N]"'[Na"'aNa[N,G]]v
k+1
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and furthermore

[N,...,N,G,...,G]
[ AN L N S S
k+1 s
< II N, G,...,G],...,[N,G,...,G] (3.27)
i1+---+ik+1=s[ \—-T:—/ \..::1_/ ]
(here, by definition, [N, G,... ,G] = N). We put s = (k+ 1)(c—1) +1; then
0
at least one of the 7; in the sum ¢; 4+ -+ 4+ ¢4 = s is greater than ¢ — 1, and
hence each commutator in the product (3.27) contains a subcommutator

[N,G,...,G] with i,>c. (3.28)
\-—q.,—/

ir

Corollary 3.3 allows us to transpose any of the normal subgroups A, B,C
to the beginning of the commutator subgroups:

Repeated application of this inclusion enables us to “pull out” the subcommu-
tators of the form (3.28) to the beginning of each of the factors in (3.27), so
that we get that

I [vG...,Gl,...,ING,...,G]| < [NG,...,G],N,...,N].

treebtkp1=s i1 41 c k

On the right, we have replaced all commutators [N, G,... ,G] with i, > ¢ by
LA

the larger subgroup [N, G,...,G], and the other [N, G, . ,G] by N.

[ 1

As a result, we have

Yfk9+1(G), G,...,G] < [[N,G,...,G],N,...,N]
s c k

IN
Q
8
=
=

< [[NaN],N»--- ,N] = 7k+2(N)'
k
The last step again uses the hypothesis 7.+1(G) < [N, N]. Since f(k,c) + s =

(c—1)k(k+1)/2+k+(k+1)(c—1)+1 = (c—1)(k+1)(k+2)/2+k+1 = f(k+1,¢),
we have arrived at ¥s(x41,0+1(G) < Ye2(NN), as required. a



48 3. Nilpotent and soluble groups

Corollary 3.29. Suppose that in a variety of groups U all soluble groups
of derived length 2 are nilpotent of class < c. Then every soluble group in U
of derived length s is nilpotent of (s,c)-bounded class. (In other words, there
ezists a function g(s,c) such that WNA* C N, implies BN A C Ny, ).)

Proof. Induction on the derived length s of the group. The case s = 1
is trivial, and the case s = 2 is covered by the hypothesis. Let F' be a free
countably-generated group of the variety 0 N 2A**!. It is sufficient to prove
that F is nilpotent of class < g(s 4+ 1,c) (Lemma 1.50). By the induction
hypothesis, [F, F] is nilpotent of class < g¢(s,c), and F/F® is nilpotent of
class < ¢ by the hypothesis. By Theorem 3.26, F' is nilpotent of class <
(c—1)g(s,c)(g(s,c) +1)/2 + g(s,0). 0

Remark 3.30. An explicit expression for g(s,c) which can be extracted
from the proof of Corollary 3.29 is a polynomial in ¢/2 with leading term
22°7*+1(¢/2)* 7' ~1, Another proof is outlined in Exercise 3.8 which gives a
much better bound (c*—1)/(c—1) for g(s,c). A.G.R.Stewart [1966] found the
best possible bound for the nilpotency class in the conclusion of Theorem 3.26:
ck+ (c— 1)(k — 1); this may well further improve the bound in Corollary 3.29.

Analogues of Corollary 3.29 hold for some varieties of algebraic systems that
are groups with additional operations. At least, if the terms of the abstract
derived and lower central series are always normal subsystems in such a variety
(as in varieties of groups with operators, say), then the proof of Corollary 3.29
works for this variety without any changes.

Exercises 3

1. Suppose that H is a subgroup of a nilpotent group G. Prove that the
subgroups H{;(G) form a subnormal series containing H.

2. Use the Three Subgroup Lemma to prove that [y,(G), (n(Q)] £ (o-m(G)
for n > m in any group G (where {,(G) = 1).

3. Produce an example of a nilpotent group G of class c such that the terms of
the upper central series, numbered as G = Gy = ((G) > G2 = (-1(G) >
... > G. = (1(G), do not satisfy the inclusions [G;, G;] < Gig;.

4. Let A be a maximal (with respect to inclusion) abelian normal subgroup
of a nilpotent group G. Prove that A = Cg(A). [Hint: If false, choose an
element g € Cg(A) \ A whose image in G/A belongs to Z(G/A).]

5. Prove that the order of a finite nilpotent group is bounded in terms of
the maximum of the orders of its abelian normal subgroups. [Hint: Use 4
and consider the action of the group by conjugation on a maximal abelian
normal subgroup.]
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11.

12.

13.

14.

15.

16.
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. Prove that a group G is soluble of derived length d if and only if [G, G] is

soluble of derived length d — 1.

Let G be a group generated by two elements z,y. Show that the law &,
of solubility of derived length 2 holds on the generators z,y (while G may
not be soluble: for example, S5 is generated by a cycle of order 5 and a
transposition).

. Under the hypothesis of Corollary 3.29, prove that every soluble group

in U of derived length s is nilpotent of class at most (¢® — 1)/(c — 1).
[Hint: Use induction on s to prove that [G¢~Y, G,..., G] < GO for
G E m-] cs=1

(L. Kaluzhnin) Suppose that G = G, > G > ... > G541 = 1 is a normal
series of a group G. If A < Aut @ is such that [G;, A] < Giyy for all ¢,
then show that both A and [G, A] are nilpotent of class s. [Hint: Define
A; = (; C4(Gi/Gi4;) (in particular, A; = A by the hypothesis) and use
the Three Subgroup Lemma to prove that the A; form a central series
for A, which is equivalent to [G;,[A;, A]] < Giyj for all 7,j. To prove
nilpotency of [G, A], apply the proved assertion for A to the action of [G, A]
by conjugation on G (use the Three Subgroup Lemma again).]

(P.Hall) Suppose that G = Gy > Gy > ... > G, = 1 is any series of a
group G. If A < Aut @G is such that [G;, A] < Giy, for all ¢ (in particular,
each G; is A-invariant), then A is nilpotent of class s(s — 1)/2.

Let G be a group with 44(GQ) finite of order m. Prove that G has a
subgroup of m-bounded index which is nilpotent of class < k. [Hint: Take

Co(1(Q)).]
Suppose that G has a normal series of length s + n whose s factors are
abelian and the other n factors are finite of order at most m. Prove that G

has a subgroup of (m, n)-bounded index which is soluble of derived length
at most s + n.

Suppose that G is a group with [G, G] finite of order n. Prove that the
index |G : ((G)]| is finite and n-bounded.

Prove that, for any elements z,y in any nilpotent group of class 2, we have
(zy)" = z™y"[y, z]"""V/2 for any n € Z.

Suppose that G is a torsion-free nilpotent group. Prove that G/Z(G) is
also torsion-free. [Hint: Use 14 and induction to show that (3(G)/Z(G) is
torsion-free.]

Prove the following consequence of the Three Subgroup Lemma: for any
normal subgroups A, By,...,B, <G

[4, [By,...,BJ] < [[[A,Bir,-.. ,Busl-

T€S
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17.

18.

19.

20.

21.

22.

23.

3. Nilpotent and soluble groups

Suppose that both a group G and its normal subgroup N are subgroups of
the direct product Hy X --- x H, such that both the projection of G and
the projection of N on H; coincide with H;, for each i = 1,... ,n. Prove
that G/N is nilpotent of class n — 1.

(N.Ito) If a group G = AB is a product of two abelian subgroups, then
show that G is soluble of derived length 2.

Prove that if a nilpotent group G has cyclic derived factor-group G/[G, G,
then, in fact, [G,G] = 1.

(H. Fitting) Suppose that M and N are nilpotent normal subgroups of a
group G. If m and n are the nilpotency classes of M and N, then show
that MN is a nilpotent subgroup of class < m + n.

Suppose that G is a soluble group of derived length 2 generated by s ele-
ments and satisfying the law [z,y,...,y] = 1. Prove that G is nilpotent
—

of (s,n)-bounded class. n

Let G be a finite soluble group, ¢ € AutG and (|¢|,|G|) = 1. Suppose
that ¢ # 1 but ¢ acts trivially on all ¢-invariant proper subgroups of G.
Prove that G is nilpotent of class 2. [Hint: Use Exercise 2.6 to show that
G =[G, ¢]. Then apply the Three Subgroup Lemma 3.2 to G, [G,G] and

(¢)-]

Suppose that z™y™ = y"z™ for some elements z,y in a torsion-free nilpo-
tent group, for some m,n € N. Prove that zy = yz.
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Chapter 4
Finite p-groups

Throughout this chapter, p denotes a prime number. We prove here some
elementary properties of finite p-groups including the Burnside Basis Theorem.
Then we prove a theorem of P. Hall on the orders of the lower central factors
of a normal subgroup. Many other properties of finite p-groups will be proved
later, some in Chapter 6 using the associated Lie rings, some in Chapter 10
using the Mal’cev-Lazard correspondence, some in Chapter 11 on powerful
p-groups. The main results of the book in Chapters 8, 12, 13 and 14 are also
about finite p-groups.

We shall freely use the fact that the homomorphic images of commutator
subgroups are commutator subgroups of the images (1.14), the same being
true for verbal subgroups, like G* = (¢ | g € G), by Lemma 1.47.

§ 4.1. Basic properties

By the definition from §1.1, a group is a p-group if the orders of all of
its elements are powers of p. By Lagrange’s Theorem, any group of order p®,
n € N, is a finite p-group. The converse is also true by the Sylow Theorems.
Thus, we can safely redefine finite p-groups as groups of order p*, n € N. By
Lagrange’s Theorem, all factor-groups and all subgroups of a finite p-group
are again finite p-groups. Note that every group of order p is cyclic, since
every non-trivial element generates a subgroup of order that divides p and

hence equals p. One can also show that every group of order p? is abelian
(Corollary 4.2).

Theorem 4.1. Every finite p-group is nilpotent.

Proof. Suppose that P is a group of order p™. The group P acts on itself
by conjugation as a group of automorphisms (not necessarily faithfully). By
Lemma 2.9, the fixed-point subgroup is non-trivial and, obviously, coincides
with the centre Z(P) # 1. We can now use induction on |P| to show that P is
nilpotent. The order of P/Z(P) is less than |P|. By the induction hypothesis,
P/Z(P) is nilpotent, and hence P is nilpotent too (Remark 3.11). a

Corollary 4.2. If P is a group of order p™ > p, then P is nilpotent of
class at most n — 1.

Proof. The orders of all factors of the lower central series are at least p. It
remains to show that the order of the first factor G/, cannot be less than p?.
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Indeed, if |G/72(@)| = p, then G/7:(G) is cyclic and hence G = (g, y2(G)) for
some g € G\ 72(G). But the nilpotency class of (g,72(G)) is less than that
of G by Corollary 3.13, a contradiction. a

Definition 4.3. If a group P of order p™ has nilpotency class exactly n—1,
then P is a p-group of mazimal class.

It can be proved that every finite (or periodic) nilpotent group is a direct
product of its Sylow subgroups. So most of the theory of finite nilpotent groups
amounts to that of finite p-groups. The general properties of nilpotent groups
established in Chapter 3 hold for finite p-groups. Some special effects are due
to the divisibility arguments. For example, it follows from Lagrange’s Theorem
that every subgroup of index p in a finite p-group is mazimal, that is, is not
properly contained in any other proper subgroup. The converse is also true,
along with a kind of a dual result.

Lemma 4.4. In any finite p-group P,
(a) every mazimal subgroup is normal and has indez p;

(b) every normal subgroup of order p is contained in the centre.

Proof. (a) If H # P, then Np(H) > H by Theorem 3.14, since P is
nilpotent. Hence, if H is maximal, then Np(H) = P, that is, H < P. We
choose an element § € P/H of order p; this can always be done, since for
|z| = p* > p we have |z?"'| = p. Then H # (9)H, where g is any preimage
of g, whence H(g) = P, since H is maximal. We see that |P : H| = |P/H| =
|{g}| = p, as required.

(b) Let C be a normal subgroup of order p; since P is nilpotent, [C, P] < C
by Theorem 3.14. By Lagrange’s Theorem, the order of [C, P] is then a proper
divisor of |C| = p; hence [C, P] = 1, that is, C < Z(P). a

Theorem 4.5. In a finite p-group P,

(a) every normal subgroup N can be included in a central series with
factors of order p;

(b) every subgroup H can be included in a subnormal series with factors
of order p.

Proof. (a) Induction on the order of P. Since a required series for N = P is
also a required series for N = 1, we may assume that N # 1. By Theorem 3.14,
we have then NN Z(P) # 1; let z be an element of NN Z(P) of order p. Since
|P/(z)| < |P|, by the induction hypothesis there is a central series in P/(z)
containing N/(z), with factors of order p. The full inverse images of the
members of that series in P, together with (z), form the required series for P.
Indeed, all of its factors have order p by the Homomorphism Theorems, and
the series is central by Lemma 4.4(b).
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(b) By Theorem 3.14, P has a subnormal series containing H. By (a),
each factor of this series has a central series with factors of order p. The full
inverse images of all members of all of these series form a subnormal series
of P containing H, with factors of order p. a

We introduce now an important characteristic subgroup of a finite p-group.

Definition 4.6. The Frattini subgroup ®(P) of a finite p-group P is defined
to be ®(P) = PP[P, P]. (Recall that P? = (¢? | g € P).)

There are two other characterizations of ®(P).

Theorem 4.7. In a finite p-group P,

(a) the Frattini subgroup ®(P) coincides with the intersection of all maz-
imal subgroups of P;
(b) if P =(M,®(P)), then P = (M).

Proof. (a) By Corollary 4.4(a), every maximal subgroup H of P is normal
and has index p. Hence the factor-group P/H is cyclic of order p and, in
particular, is abelian of exponent p. Therefore, [P/H, P/H) = [P,P|H/H =1
and (P/H)? = PPH/H = 1, which means that [P, P] < H and P? < H. Thus,
®(P) = P?[P, P] is contained in every maximal subgroup of P and hence in
their intersection.

The factor-group P/®(P) is abelian since ®(P) > [P, P], and P/®(P)
has exponent p since ®(P) > PP. Therefore, P/®(P) can be viewed as a
vector space over I, (see §1.1). It is easy to see that the intersection of all
subspaces of codimension 1 is the zero subspace: each non-trivial vector @ can
be included in a basis {@ = @, d3,... ,d;} and the subspace {@2,...,dq) of
codimension 1 does not contain d. The subspaces of codimension 1 in the
vector space P/®(P) are precisely the subgroups of index p, that is, maximal
subgroups of P/®(P). Thus, the maximal subgroups of P/®(P) have trivial
intersection. The full inverse images of the maximal subgroups of P/®(P)
are maximal subgroups of P (by the Homomorphism Theorems). Since the
image of the intersection is contained in the intersection of the images, the
intersection of the maximal subgroups of P is contained in ®(P).

(b) If (M) is a proper subgroup of P, then (M) < H < P for some maximal
subgroup H of P. But ®(P) < H, as provedin (a). Then P = (M, ®(P)) < H,
a contradiction. ad

A minimal system of generators of a group is a set of generators such that
no proper subset of it generates the whole group. There exist groups that
have no minimal systems of generators (Exercise 1.11). Of course, every finite
group has a minimal system of generators. The cardinalities of such systems
may vary for a given group, even for a finite one (the cyclic group of order 15
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has a minimal system consisting of two elements of order 3 and 5). But for a
finite p-group the cardinality of a minimal system of generators is an invariant.

Burnside Basis Theorem 4.8. A set of elements in a finite p-group P
is a minimal system of generators if and only if the images of these elements
form a basis of P/®(P) viewed as a vector space over F,.

Proof. Suppose that {ay,...,a,} is a minimal system of generators for P.
Then the images @; of the a; in P/®(P), of course, generate P/®(P); in
other words, the a; span P/®(P) as a vector space. If the set {ay,...,a,}
is linearly dependent, then some proper subset {a,,,...,a:.}, for s < n, also
spans P/®(P). Translating to the group language, we obtain that P/®(P) =
(@,,...,a,), and therefore P = (a;,,...,ai,, ®(P)). Then, by Theorem 4.7(b),

P =(a;,,...,a:,), contrary to the minimality of the generating set {a1,...,a,}.
Thus, {@,...,a,} is a basis of P/®(P), as required.
Conversely, suppose that the images @, ... , @, of some elements a,... ,a,

form a basis of P/®(P). Then P = (a,, ..., a,, ®(P)), which implies that P =
(a1,...,a,) by Theorem 4.7(b). Any proper subset of {ai,...,a,} does not
generate the whole of P because its image in P/®(P) does not span P/®(P),
since {@1,... , @n} is a basis. a

§4.2. A theorem of P. Hall

We shall need the following consequence of the Three Subgroup Lemma.

Lemma 4.9. For any two normal subgroups A, B in an arbitrary group,
[A,7s(B)] < [A,B,... ,B] for any k € N.
A A

s

Proof. Induction on s; if s = 1, then the assertion is obvious. Let s > 1.
By the induction hypothesis applied to [B, A] instead of A, we have

[[BaA]a7s—1(B)] < [[BaA]’Ba ,B] = [[ArB]aB, ,B] = [AaBr ,B]

s—1 s—1 s

Next, by the induction hypothesis

[A,7.—1(B), B] < [[A,B,...,B],B] = [A,B,...,B)].

s—1 s

By the Three Subgroup Lemma 3.2,

[A,73(B)] = [73(B)aA] = [[73—1(B)aB]aA] < [A, B,... ,B]

s
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The following theorem from the seminal paper of P. Hall [1934] is remark-
able by a surprisingly strong conclusion following from a rather innocent-
looking hypothesis.

Theorem 4.10. Suppose that N is a normal subgroup of a finite p-group P
such that N < 4,(P). Then all factors of the lower central series of N, with
the possible exception of the last one, have orders at least p* (in other words,
(V) ki1 (V)] > p* whenever uga (N) # 1).

Proof. We can assume that v¢41(/NV) # 1, since there is nothing to prove
otherwise. As a characteristic subgroup of a normal subgroup, Yi41(N) is a
normal subgroup of P by 1.8. By Theorem 4.5, P has a central series including
Yi1(N) with factors of order p. Hence we can choose a normal subgroup M
of P contained in 44 (V) as a subgroup of index p such that

[yer1(N), Pl < M. (4.11)

At the same time, [1x(N), N] = 1+1(N) £ M. Since N < 7,(P), the latter
implies that [yx(N),v.(P)] £ M. By Lemma 4.9, the more so

N),P...,P|£M. 4.12

[7k( )a > » ] £ ( )
We consider the following series of length n formed by taking successively

the mutual commutator subgroup with P, where a bar denotes the image

in P/yipa(N):

w(N) 2 [w(N),P] 2 [w(N),P,P| > ... 2 [(N),P,... ,P] > 1. (413)

All terms in (4.13) are normal subgroups of P (Lemma 1.12); we claim that all
of them are non-trivial. It suffices to show this for the last one:

[7k(N),F,"' ,F] = [7k(N)aPa"' aP] # L

n—1 n—1
Suppose the opposite; then [yx(N), P, ..., P] < 4x41(N), and hence by (4.11)
[N

n-1

P ... = N, P,... PP < N),P] < M,
[7k(N), ) aP] [[7k( )a ) 1, ], ] = [7k+1( )a ] =
which contradicts (4.12).

Since all terms in (4.13) are non-trivial, all inclusions in (4.13) are, in
fact, strict, by Theorem 3.14 applied to [yx(N), P,...,P] and P, for i =
N’

0,1,...,n— 1. Since there are n factors in (4.13), and each is a non-trivial
p-group of order at least p, the order of 7 (N)/vk+1(N) is at least p* (by
Lagrange’s Theorem). a
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Exercises 4

. Prove that the set of all upper unitriangular n X n matrices UT,(FF,) (see

Exercise 2.2) is a finite p-group with respect to matrix multiplication. De-
termine the order, the terms of the lower central series, the terms of the
derived series, the nilpotency class and the derived length of UT,(F,). Find
in UT,(F,) a characteristic series of length < 1 + log,n with elementary
abelian factors.

Let ¢ be an automorphism of a finite p-group P such that p{ |p|. Suppose
that ¢ acts trivially on a ¢-invariant maximal abelian normal subgroup A.
Prove that ¢ = 1. [Hint: Apply the Three Subgroup Lemma 3.2 to obtain
that [P,¢] < A; then use Lemma 2.11.]

. Let ¢ be an automorphism of a finite p-group P such that p 1 |¢|. Suppose

that ¢ acts trivially on the factor-group P/®(P). Prove that ¢ = 1.

. (P.Hall) Suppose that P is a group of order p* such that |P/®(P)| = p".

Then show that |Aut P| divides p"»")|GL,(F,)|. [Hint: Let N be the
kernel of the action of Aut P on P/®(P); then (Aut P)/N is isomorphic
to a subgroup of Aut (P/®(P)) = GL,(F,). By 3, N is a p-group. To
estimate the order of NV, fix a minimal generating set of P: the images of
its elements under any ¢ € N do not change mod ®(P).]

Let (a) be a cyclic group of order p*. Prove that Aut (a) is an abelian group
and determine its structure (cyclic decomposition). Warning: the answer
looks different for p = 2.

Suppose that p # 2 and P is a finite p-group with |Q,(P)| = p. Prove that
P is cyclic. [Hint: By induction, P has a cyclic subgroup of index p; use
5.] (Note that Qs from Example 2.10 is a counterexample for p = 2.)

Suppose that a finite p-group P has an abelian subgroup of index p?. Prove
that P has a normal abelian subgroup of index p?. [Hint: If A is abelian,
then AN A7 < Z((A, A%)).]

Suppose that P is a finite p-group such that Z([P, P]) is cyclic. Prove
that [P, P] is cyclic. [Hint: If false, choose N < P such that Z([P, P]) <
N < [P, P] with |N : Z([P,P])] = p. By Exercise 1.14, N is abelian.
If |Q:(N)| = p?, then P acts on Q;(N) as a group of order p, whence
QU (N) < Z([P, P]), a contradiction. If |Q(N)| = p, then N is cyclic and
[P, P] acts trivially on N by 5, whence N < Z([P, P]), a contradiction.]

Suppose that P is a finite p-group such that |P(M) /P3| < p?. Prove that
P® = 1. [Hint: If P® #£ 1, choose N < P such that N < P® with
|P®) : N| = p; then apply 8 to P/N ]



Chapter 5

Lie rings

Definitions and basic properties of Lie rings are discussed in §5.1. Then
nilpotent and soluble Lie rings are defined in § 5.2, and the analogues of group-
theoretic results from Chapter 3 are proved for them. Free Lie rings are con-
structed within enveloping free associative Q-algebras in § 5.3. This construc-
tion will be used in Chapter 9 in conjunction with free (nilpotent) groups and
the Baker—-Hausdorff Formula; the only consequence that we need earlier is
that free Lie rings are multihomogeneous with respect to free generators.

§5.1. Definitions and basic properties

Lie rings are non-associative and without 1. The multiplication (often
called the Lie product) is usually denoted by brackets [z,y] (which are always
necessary, since the multiplication is not associative). In addition to the laws
common to all rings (abelian additive group and distributive laws), Lie rings
must satisfy the following axioms:

[z,2] =0 (anticommutative law);

([z,y], 2] + [[v, 2], 2] + [[2,2],4] = O (Jacobi identity),

for all z,y,z € L. It follows from the anticommutative law that [a, 5] = —[b, q]
(since [a + b,a + b] = 0 and [a,a] = [b,b] = 0).

Let K be a commutative associative ring with unity. A Lie ring L which
is also a K-module with naturally agreed operations, [a,blk = [ak, b] = [a, bk]
for all a,b € L, k € K, is a Lie K -algebra, with ground ring K. Every Lie ring
is, of course, a Lie Z-algebra.

If we know the pairwise products of some generators aq, az,... of the addi-
tive group of a Lie ring L, then we can compute the products of any elements
in L as linear combinations of the a;, using the distributive and anticommu-
tative laws. If L is a Lie K-algebra, it suffices to know the products of the
generators of L as a K-module. The products [a;,a;] are themselves linear
combinations of the ag:

(@i, a;] = ;C{}ak, C,-'; €Z (e K).
The Cf are called the structural constants of L (with respect to the a;).

Examples. 5.1. Vectors of the three-dimensional real vector space R*
with respect to the usual addition of vectors and the vector multiplication
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[¥,v] = u X v form a Lie R-algebra, the axioms being well-known properties
of the vector product. We can choose an orthonormal basis e, €5, €3 such that
the structural constants are [e1, e2] = €3, [e2, €3] = €1, [ea, €1] = €a.

5.2. Let A be an associative ring. The structure of the Lie ring A7) is
defined on the same additive group A with Lie multiplication [z,y] = zy — yz.
The axioms are easily verified: anticommutative law [z,z] = zz — zz = 0; the
Jacobi identity

[[.’I:, y]» Z] + [[y, z], .’t] + [[z, .’t], y]
=zyz—yrz—2zy+zyr+yzz—z2yr—zyz+zzy+zzy—zzy—yzet+yzz =0;

distributive laws follow from those for A. If A is a K-algebra, then A(-) is
a Lie K-algebra. This is a universal example, since every Lie algebra can be
represented as a subalgebra of A(-) for a suitable A (the Poincaré-Birkhoff-
Witt Theorem). We shall prove this theorem in the special case of free Lie
rings in §5.3.

5.3. In particular, the set of all n X n matrices over a field forms a Lie
algebra with respect to the usual component-wise addition and Lie multipli-
cation [A,B] = AB — BA. The Ado-Iwasawa Theorem states that every
finite-dimensional Lie algebra over a field can be represented as a subalgebra
of a matrix Lie algebra.

5.4. The free Lie ring F on free generators {z; | ¢ € I} can be obtained
according to §1.3 as the factor-ring of an absolutely free ring by the verbal
ideal defined by the laws of Lie rings. In other words, F is the collection of all
formal linear combinations of all formal (non-associative) bracket monomials
in the z;, and two such linear combinations are identified if one of them can be
transformed into the other by applying the axioms of Lie rings. Any mapping
z; — l; of the free generators to arbitrary elements /; in any Lie ring L extends
to a homomorphism of F' into L. However, this construction does not say
much about the structure of F'; for a better description of F' see §5.3.

As usual, a Lie subring of a Lie ring is a subset closed under all operations,
a homomorphism of a Lie ring is a mapping preserving all operations, an
isomorphism is a bijection that is a homomorphism, and an automorphism of
a Lie ring is an isomorphism onto itself. It follows from the anticommutative
law that every left or right ideal in a Lie ring is a two-sided ideal; recall the
notation 7 < L for an ideal I of a Lie ring L. The Lie subring generated by
a set X is denoted by (X) and consists of all linear combinations of all Lie
monomials in the elements of X. We denote by (X) the additive subgroup
generated by the set X, the span of X. The ideal generated by X is denoted
by ia(X). The additive group of ;a(X) is spanned by all Lie monomials that
involve at least one element of X. For n € Z, we denote by nX the set
{nz | z € X}. Then, obviously,

dnX) =nydX),  wanX) = na(X) (5.5)
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(although we can only claim that (nX) C n(X)). The above terminology
applies to Lie K-algebras with adjustments for the additional operations of
multiplying by scalars from K (for example, we always have (nX) = (X) in a
Lie Q-algebra).

Cartesian and direct sums of Lie rings are defined as for all algebraic sys-
tems; see § 1.3. Similarly to groups, there are internal and external definitions
of direct sums of ideals which are equivalent. The notation é; A; may be used
both for direct sums of Lie rings A; (in which case the A; are ideals), and for
the additive subgroups of a Lie ring where the A; may also be subrings or may
not; the meaning must be clear from the context.

Commutators as formal bracket expressions and their (multi)weights were
defined in §1.1. We can compute the value of any (complex) commutator on
elements of a Lie ring, treating [a, b] as the Lie product of a, b. So the additive
group of (X) is spanned by all commutators in the elements of X. Recall the
simple commutator notation [ay,. .. ,ax] = [...[[a1, a2),aa],. .. ,ax].

Lemma 5.6. (a) Every commutator in the elements ay,... ,ax is a Z-li-
near combination of simple commutators each having the same entry set and
the same multiweight in the a;.

(b) In addition, these simple commutators can be chosen all to begin with
the same fized element a;, € {ay,... ,ax} involved in the original commutator.

Proof. (a) Induction on the weight of the commutator; if the weight is 1
(or 2), the commutator itself is simple. Let c be a commutator of weight > 1;
then ¢ = [¢, ¢p], where ¢; and ¢, are commutators of smaller weight. By the
induction hypothesis and by the distributive laws, we may assume that both ¢
and c; are simple commutators. Then we apply induction on the weight of cy;
if the weight of c; is 1, then ¢ = [¢, ¢p] is simple. Otherwise c; = [ca1, c22), and
we have

¢ = [c1, [ea1, e22]] = [[e1, ean], €] — [[e1, e22], €21]
by the Jacobi identity. On the right, the initial segments [c;, c21] and [cy, c25)
are linear combinations of simple commutators by induction on the weight.
Since the weights of cy; and cg; are less than that of ¢z, induction on the
weight of the second factor finishes the proof. At every step the multiweight
of the commutators involved remained the same.

(b) Using (a), we only need to consider a simple commutator of the form
[@iyy. .. »aiy,a;] which equals [a;,...,a5,a,] — [ai,...,[aj,a,]] by the
Jacobi identity. The first summand is the required linear combination by
induction on the weight applied to the initial segment [a;, ... ,a;]. If @)y, ]
is regarded as a new variable, the second summand has smaller weight and
hence is a linear combination of simple commutators beginning with [a,, a;,],
which are also simple commutators beginning with a;;. ad

Let L = (X) be a Lie ring; the homogeneous component of L of weight k
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(with respect to X) is the span Lj of all commutators of weight k in the
elements of X. The additive subgroup (ideal, subring) H of L is homogeneous,
if H =@, HN L. Let X = {21, 2,,...}; the multihomogeneous component
L; of multiweight k= (K1, k2, ...) (of weight ky in zq, kg in z,, ... ) is the span
of all commutators of weight k; in z;, k; in zo, ... . The additive subgroup
(ideal, subring) H of L is multihomogeneous, if H = @ H N Lg, where the
sum is taken over all multiweights k. 1t is clear that multihomogeneous implies
homogeneous. If L is a Lie K-algebra, we take K-spans instead of Z-spans.

Examples. 5.7. In Example 5.1, for L = R® = (e, €3, €3), we have
L=1L, =L, =.... Wealso have L = (e, €;); then L, = j(e1,e2); L2 =
+{es); La = y(en,ex); La = 4(es);... . For either set of generators, L is
not homogeneous.

5.8. A free Lie ring F' can be shown to be multihomogeneous with respect
to the free generators. It can be shown that every homogeneous component
F}. of weight k is a free abelian groups; the so-called basic commutators can be
chosen as its free generators. We shall obtain these results in §5.3.

Definition 5.9. For subsets A and B in a Lie ring L, we define [4, B] =
H[a,b] | a € A, b€ B).

Although much of Lie ring notation is similar to that of groups, note that
[A, B] may not be a Lie subring, even if both A and B are subrings (while
for groups, [M, N] is always a normal subgroup in (M, N)). On the other
hand, many things are simpler in Lie rings because of linearity. For example,
it follows from 5.9 by the distributive laws that

(A, Ag, ... A = [[A1, Ag), ..., A) = d[an,... ya)] | a; € A;).  (5.10)

Lemma 5.11. If A and B are ideals of a Lie ring L, then [A, B] is also
an idedl of L.

Proof. By the definition, [A, B] is an additive subgroup of L. To show
that [A, B] is an ideal, by the distributive laws, we only need to show that
([@,b],]] € [A,B] for any a € A, b € B and I € L. By the Jacobi identity, we
have [[a,b],!] = [[a,],b] + [a, [b,{]] € [A, B] since [a,!]] € Aand [b,]]€ B. O

In particular, [L, L] is an ideal of L (often denoted by L?). If L = (X},
then [L, L] is spanned by all commutators [z,y], 2,y € X; if L = (X), then
[L, L] is spanned by all commutators of weights > 2 in the elements of X.

The subset Z(L) = {z € L|[z,z] =0 forall z € L} is an ideal called the
centre of a Lie ring L. As with groups, we call a Lie ring abelian (commutative)
if Z(L) = L, which is, of course, equivalent to [L, L] = 0.

The subset Cr(M) = {c € L | [c,»] =0 for all m € M} is a Lie subring
called the centralizer of a subset M of a Lie ring L. If I < L, then Cr(I) < L.
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For § € L/CL(I) the mapping 9(§) : z — [z, y] is well-defined, where y is any
preimage of ¥ = y + Cr(7). It follows from the distributive laws that 9 is an
isomorphism of the additive factor-group L/Cr(I) into Homgz I. Moreover, 9
is an isomorphism of the Lie factor-ring L/Cr(I) into (HomzI)() (see 5.2),
as follows from the Jacobi identity. For I = L the J(§) are known as inner
derivations of L usually denoted by ad(y). One can also define the normal-
izer (“idealizer”) of a Lie subring and prove an analogue of Lemma 1.9 for
Np(H)/CL(H). The inner derivations are analogous to inner automorphisms
of groups; they are used to define external and internal semidirect sums of Lie
rings; we leave this as an exercise to the reader.

Definition 5.12. Let A be an additively written abelian group. A Lie ring
is said to be A-graded, if the additive group of L is the direct sum L = @y 4 L,
of the additive subgroups Ly, g € A, such that [L,, Ly] < Ly, for all g, b € A.

Graded Lie rings appear naturally in relation to automorphisms.

Example 5.18. Let ¢ be an automorphism of order n of a Lie algebra L
over C. Then the Jordan normal matrix of ¢ is diagonal, since for any Jordan
block of size greater than 1, we have

n —_
a 1 o na™l

and this cannot be the identity matrix. Thus, L decomposes into the direct
sum of the eigenspaces,

L=@L, (5.14)

where L; = {l{ € L | ¥ = w'l}, for a fixed primitive nth root of unity w. For
any a € L;, b € L; we have [a,b]* = [a%,b%] = [w'a,w’b] = w't[a, b], so that
[Li, L;] < Liy;, where ¢ + j is taken modulo n since w™ = 1. Therefore (5.14)
is a (Z/nZ)-grading of L.

Now we discuss extending the ground ring. If K < R are commutative
associative rings with 1, and L is a Lie K-algebra, then the R-module Lk R
is a Lie R-algebra with respect to the Lie multiplication

i ®r,la@r) = [l1, 5] @ g, el r,e R

Of course, L ®x R is also a K-algebra. Suppose that R as a K-module de-
composes in the direct sum R= K @ U. Then LQR=LQx K® L®x U
by Lemma 1.35. In this situation L can be identified with the K-subalgebra
Lk K=L®1l={l®1l|le L} of L® R Under this identification, for
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any subsets A, B C L, we have
[A®Kk R, BQgk R] = [A,B)®k R; (A ®k R) = id(A) ®xK R. (5.15)

If G is a group of automorphisms of L, then G can be viewed as a group
of automorphisms of the Lie R-algebra L @k R acting as ({®r)! =1 Q@r, for
le L, reR, geq.

Example 5.16. Let G be a group of automorphisms of a Lie ring (Z-
algebra) L, and let w be a primitive nth root of unity. Then G acts naturally,
as described above, on the Lie Z[w]-algebra L = L ® Z[w]. Because of the
decomposition Z[w] = Z ® wZ & -+ & w?™M~1Z, where p(n) is the Euler’s
function, we have L = L& (LR w) ® (LQ®w?) & -+ & (L ® w?™~1), Every
Z-submodule L ® w* is G-invariant, so that C3(G) = ! Crewi(G), while
Crguwi(G) = CL(G) ® w'. In other words, we have C3(G) = CL(G) ® Z[w].
(Here, of course, Cn(G) = {n € N | n? = n forallg € G} denotes the
fixed-point subalgebra.)

§ 5.2. Nilpotent and soluble Lie rings

Many of the definitions and properties of soluble and nilpotent Lie rings
are quite similar to those of soluble and nilpotent groups, with addition in Lie
rings taking the role of products in groups and the Lie products taking the role
of commutators in groups. Moreover, many of the properties become easier to
prove; for example, in place of the Hall-Witt Identity

(0,671, - [b,¢7 0] [, 07!, 0] = 1,

which we proved for groups, we simply have the Jacobi identity [a,b,c] +
[b, c,a] + [c, a,b] = 0, which holds in any Lie ring by definition. The Jacobi
identity implies an analogue of the Three Subgroup Lemma 3.2 for Lie rings.
In place of the commutator formulae 1.11, we have distributive and anticom-
mutative laws in Lie rings. There must be some caution; for example, the
additive subgroup [M, N] in a Lie ring may not be an ideal in the Lie ring
(M, N). However, if both M and N are ideals, [M, N] is an ideal analogous to
the commutator subgroup (Lemma 5.11).

Definition 5.17. The terms of the lower central series of a Lie ring L are
defined recursively to be v1(L) = L, v (L) = [w(L), L]. (Often yx(L) is
denoted by L* for Lie rings.)

For the rest of the section we put % = 7x(L), for short. We see at once
that 74 is a verbal ideal of L with respect to the word [z,,... ,z]. By (5.10),
7k is spanned by the simple commutators of weight k in the elements of L; and
every commutator of weight > k is contained in 7 by Lemma 5.6. If L = (M),



5.2. Nilpotent and soluble Lie rings 63

then ¢ is spanned by the commutators of weights > k in the elements of M,
and by Lemma 5.6 it suffices to take only simple commutators. The following
is a corollary of the Jacobi identity.

Corollary 5.18. In a Lie ring L, we have [Ym,¥n] < Ymtn for all m,n € N,

Proof. Repeat the proof of Corollary 3.5, replacing “the Three Subgroup
Lemma” by “the Jacobi identity”. a

Definition 5.19. A Lie ring L is said to be nilpotent of dass < ¢, if
Ye41 = 0, or, equivalently, if the law [z),... ,z.41] = 0 holds on L. The least
such number c is the nilpotency class of L. (A Lie ring is often said to have
nilpotency class c if it has nilpotency class < c.)

One can define the (upper) central series for Lie rings as in 3.7 and 3.8 and
prove an analogue of Theorem 3.9 for Lie rings. Since 74 is spanned by the
simple commutators of weights > k in the generators, we immediately obtain
the following fact.

Corollary 5.20. Suppose that L = (M) is a Lie ring generated by the
subset M. Then L is nilpotent of dass < c if and only if [mq,ma,... ;] =0
for any m; € M. a

The nilpotent Lie rings of class < c form a variety, denoted by M.. There-
fore, all Lie subrings, all homomorphic images, and all Cartesian products
of nilpotent Lie rings of class < c (that is, from 91.) also belong to MN..
A free nilpotent Lie ring of class c is the factor-ring of an “absolutely” free
Lie ring F by the verbal ideal 4.41(F). We shall prove in §5.3 that F is
(multi)homogeneous with respect to the free generators. Then v..1(F) =
Yi>ct1 Fi, where F} is the homogeneous component of weight i. Therefore, the
free nilpotent Lie ring of F/y.+1(F) is also (multi)homogeneous with respect
to the free generators, and its homogeneous components of weight ¢ < ¢ are
isomorphic to those of F'.

If all Lie rings in some variety 0 are nilpotent, then there is an upper bound
for the nilpotency classes of all Lie rings in 9, that is, 2 is contained in M.
for some ¢ € N. Indeed, a countably generated free Lie ring of the variety U
is nilpotent of some class ¢ by the hypothesis, and hence all Lie rings in 0 are
nilpotent of class < ¢ (Lemma 1.50).

We shall later consider varieties of algebraic systems that are Lie rings with
additional operations. By definition, such a system is nilpotent of class < c if
it satisfies the law [z1,... ,z.41] = 0 (there may be difficulties with equivalent
definitions because of the additional operations). The varietal arguments from
the two preceding paragraphs apply to such systems, too.

The properties of nilpotent groups recorded in Theorem 3.14 have their



64 5. Lie rings

analogues for Lie rings; we leave it as an exercise to the reader to formulate
and prove them.

Definition 5.21. The terms of the derived series of a Lie ring L are defined
recursively to be L) = [L, L] and L+ = [L®¥) L],

Clearly, L(® is a verbal ideal with respect to the word 8i(z1,... , ),
where, recall, 6,(z1,z2) = [21, 2] and

bnt1(215. .o s Tomi1) = [64(1,. .., T2n), Ba(Tongn, .. Tonir)].

Definition 5.22. A Lie ring L is said to be soluble of derived length < d
if L@ = 0 or, equivalently, if the law 84(z),... ,254) = 0 holds on L. The
minimal such number d is the derived length of L. (It is often said that a Lie
ring is soluble of derived length d if the derived length is < d.)

An analogue of Theorem 3.20 holds: a Lie ring L is soluble of derived
length d if and only if it has a series of (sub)ideals of length d with abelian
factors. It may not be sufficient to verify the solubility law é4(z1,... ,254) =0
only on the generators (Exercise 5.8).

The soluble Lie rings of derived length < d form a variety, denoted by 2¢.
Hence all subrings, all homomorphic images, and all Cartesian products of
soluble Lie rings of derived length < d (that is, from 2?) also belong to 2<.

If all Lie rings in a variety 0 are soluble, then there is an upper bound
for the derived lengths of all Lie rings in 0, that is, ¥ is contained in ¢ for
some d € N. Indeed, a countably generated (relatively) free Lie ring in U is
soluble of some derived length d by the hypothesis, and hence all Lie rings
in U are soluble of derived length < d (Lemma 1.50).

Suppose we have a variety of algebraic systems that are Lie rings with
additional operations. By definition, such a system § is soluble of derived
length < d if it satisfies the law 84(z1,... ,z2a) = 0. The varietal arguments
from the two preceding paragraphs apply to such systems, too.

We record for further reference several obvious formulae that hold for any
Lie ring L:

(L) =n?L@  and yi(nL) = nfy(L), foralld, ke N. (5.23)
Suppose that L = @; M; with M; < L; then

LYW= GBM,-(d) and k(L) = P (M) foralld,keN. (5.24)

A criterion for a variety to be soluble, analogous to Theorem 3.22, holds

for Lie rings too (and for some classes of Lie rings with additional operations).

We shall use this criterion in Chapter 7 for proving solubility of some graded
Lie rings.
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Theorem 5.25. If L # [L, L] for every non-trivial Lie ring L # 0 in a
variety of Lie rings 0, then the variety 0 is soluble: W C A* for some k.

Proof. Repeat the proof of Theorem 3.22, replacing 1 by 0, products by
sums, “(sub)group” by “Lie (sub)ring”, “normal subgroup” by “ideal”. a

Remark 5.26. Another form of Theorem 5.25: if a variety of Lie rings
is non-soluble, then it contains a non-trivial Lie ring which coincides with
its derived subring. We state a generalization of Theorem 5.25 for algebraic
systems that are Lie rings with additional operations: provided f¢*(0,...,0) =
0 for all operations f;*, any non-soluble variety U of such systems (“non-
soluble” here means not satisfying any of the identities 84(z1,... ,294) = 0
with respect to the chosen Lie ring operations) contains a non-trivial system
which coincides with its derived Lie subring. The proof of Theorem 5.25 can be
repeated verbatim, with homomorphisms in the sense of the algebraic systems,
and sums and commutators with respect to the chosen Lie ring operation; the
condition f;*(0,...,0) = 0 ensures that N (the direct sum of the F;) is a
normal subsystem of the Cartesian sum of the F;. For arriving at the equality
L = [L, L], it really does not matter whether additional operations were used
for forming [L, L] or not.

Of course, a nilpotent Lie ring is soluble, by an analogue of Lemma 3.25.
The converse may not be true: for example, the Lie Q-algebra with basis {a, b}
and structural constants [a, b] = a is soluble but not nilpotent. The following
theorem is analogous to Theorem 3.26 of P. Hall.

Theorem 5.27. Let N be an ideal of a Lie ring L. If N is nilpotent of
class k and the factor-ring L/[N,N] is nilpotent of class c, then L itself is
nilpotent of class at most f(k,c) = (c— 1)k(k+1)/2+ k.

Proof. Repeat the proof of Theorem 3.26, with certain simplifications (for
example, [[A, B],C] < [[C, 4], B] + [[C, B], A] by the Jacobi identity). a

Corollary 5.28. Suppose that in a variety of Lie rings 0 all soluble Lie
rings of derived length 2 are nilpotent of class < c. Then a soluble Lie ring
from 0 of derived length s is nilpotent of (s, c)-bounded class. (In other words,
there ezists a function g(s,c) such that if BNA? C N, then BNA* C Ny(,q)-)

Remarks. 5.29. A better bound (c¢* — 1)/(c — 1) for g(s,c) in Corol-
lary 5.28 can be obtained, similarly to Exercise 3.8. The better bound of
A. G.R.Stewart [1966] indicated in Remark 3.30 must hold for Lie rings too.

5.30. Theorem 5.27 and Corollary 5.28 remain valid for some varieties of
Lie rings with additional operations; at least, if the terms of the (abstract)
derived and lower central series are verbal subsystems, the same proof works.

5.81. Although in many aspects Lie rings are similar to groups, some
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caution must be exercised in drawing analogies between them. For example,
one can prove that the derived subalgebra of any soluble finite-dimensional
Lie algebra of characteristic 0 is nilpotent, which may not be true for finite
soluble groups (a better analogy is with linear (matrix) groups). On the other
hand, one can produce a simple non-abelian Lie algebra of dimension 3 over

F,, that is, of order p® (Exercise 5.5), while every group of order p® is nilpotent
of class 2 (Corollary 4.2).

§ 5.3. Free Lie rings

Let A be a free associative Q-algebra on free (non-commuting) generators
1, T2,... (when necessary, we shall take a well-ordered set of generators of any
given cardinality). In this section, we construct a free Lie ring L as a subring
of A(-). The advantage is in the fact that the structure of A is quite transparent
(Example 1.43); many important properties of L will be derived merely from
the linear independence of associative monomials in the free generators of A.

Recall that A has a basis consisting of all monomials z;, - - - z;, of degrees
k € N (no parentheses are needed because of the associative laws). The mul-
tiplication of monomials is juxtaposition:

(Ziy oo @iy)  (Zjy - T5) = Ty - Tiy Ty + 0 Ty

where no cancellations are allowed; all other products are then defined via
distributive laws. Thus, A is multihomogeneous with respect to the z;; in
particular, A = @2, A;, where A; is the homogeneous component of degree i.

The bracket multiplication [z,y] = 2y — yz defines the structure of a Lie
Q-algebra A-) on the additive group of A (Example 5.2). Every Lie monomial
(or product, or commutator) of weight k in the z; is also a linear combination
of associative monomials of the same degree k in the z; (and the same multi-
degree). We denote by L the Lie ring (Z-algebra) generated by the z; in A(-).
Then QL = {rl | r € Q, [ € L} is the Lie Q-algebra generated by the z;.
Note that QL # A(7): for example, £,z ¢ L. The additive group of L is
generated by the Lie products (commutators) in the z;. Our aim is to prove
that L is a free Lie ring on free generators z;. The main tool in the proof is
the so-called basic Lie products. We shall prove that every Lie ring is spanned
by the basic products in the generators, and that the basic products in the z;
are linearly independent in L; then L will have to be a free Lie ring. To prove
linear independence, we shall use “projections” onto associative monomials.
We are using the basic products of A. 1. Shirshov [1958] (rather than the more
traditional basic commutators of P. Hall and M. Hall).

Definitions 5.32. The following lexicographical order is defined on the
associative monomials (words) in the z;: we have a well-ordering of the gener-
ators 7, < 7z, <...,and z; ---;, < zj -z, either if, for some k, we have
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11 = J1, ..+ tk=1 = Jk—1 and ¢ < Ji, or if the right-hand side is an initial
segment of the left-hand side (sic! a proper initial segment is greater than the
word). A word u is regular if u is greater than any of its cyclic permutations:
if w = vw is any non-trivial decomposition, then u > wv.

To distinguish Lie products (commutators) in the z;, we shall temporarily
use the notation [u] for them, while v will denote the underlying associa-
tive word which is obtained from [u] by omitting all brackets; for example, if
[u] = [z3,[3,21]], then u = z323z). There are many ways of bracketing a
given associative word u; thus, while u is well-defined by [u], this notation is
ambiguous in the direction from u to [u].

Definition 5.833. The basic Lie products in the z; are defined as some
commutators in the z; by induction on the weight. The elements [z;] = z; are
the basic products of weight 1. The commutator [[b1], [b;]] is a basic product
if both [b;] and [bo] are basic products and the following two conditions are
satisfied:

(1) b > by (for the underlying associative words) and

(2) if the weight of [b1] is greater than 1 and [b1] = [[b11], [b12]],
then b1, < b, (for the underlying associative words).

For example, 1), [z3, 1], (23, [T2, 21]], [[z3, 21], [z2, 21]] are basic products.
It follows from the definition that all subcommutators of a basic product are
also basic. The independence of the basic products in L will be proved by
“marking” each basic product [u] by the greatest associative word in the de-
composition of [u] as a linear combination of associative monomials in the z;
(this greatest word is, in fact, the underlying word w).

Lemma 5.34. (a) If [u] is a basic product, then the underlying word u is
regular.
(b) For each regular word u there is a unique basic product [u].

Proof. (a) We use induction on the weight of [u]. If the weight is 1, then [u]
is one of the letters z;, which is a regular word. Let the weight of [u] be greater
than 1, and let z., be the least letter involved in [u]. Then the first occurrence
of z,, in u is after some z; > z,, and each occurrence of the subword z;z,
in u comes from a subcommutator [z}, £,,] in [u]. Indeed, the closest bracket
to any of the z,, in [u] cannot be a left one, like [z, for the right-most of such
occurrences would contradict condition (1) in Definition 5.33. If now [a, £m)
is a subcommutator with z,,), then either a has weight 1 or a = [[8],[c]]. In
the second case, ¢ < z,, according to (2) of 5.33; then ¢ must begin with z,,
which implies ¢ = z,,.

We introduce the new letter [z}, z,,] into the original alphabet, adjusting
the order for the letters as ... < z;01 < [zj,2m] < z; < ...; then the
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lexicographical order is defined on the new alphabet in the same way. It is
easy to see that the order on those associative words in the new alphabet
that have no subwords z;z,, coincides with the order in the old sense after
removing the brackets in all occurrences of the new letter [z;,z.]. Hence [u]
is a basic product in the new alphabet too, if we regard all subcommutators
[z, Zm) in [u] as occurrences of the new letter. By the induction hypothesis, u
is a regular word in the new alphabet. Therefore, removing the brackets from
the new letter, we obtain that u is greater than any cyclic permutation of u
that does not break the subwords z;z,,. The cyclic permutations of u that
do break some z;z,, begin with z,, and hence are less than u, since u cannot
begin with z,,, as we saw above.

(b) Induction on the degree of a regular word w. If the degree is 1, then
u = [u] is a basic product, being one of the z;. Let the degree of u be greater
than 1 and let z,, be the least letter involved in u. The word u, being regular,
cannot begin with z,,, for otherwise ., is the only letter involved and then u =
T, contrary to the assumption that the degree is not 1. The first occurrence
of ., in u is then after some z; > z.,. We replace all subwords z;z,, in u by
the commutators [z;, z.,] and consider the resulting word in the new alphabet
with the new letter [z;,z.,) and the order as in the proof of (a). Then u
becomes a regular word in the new alphabet. By the induction hypothesis,
there is a unique basic product [u] in the new alphabet, which is also a basic
product in the old alphabet. It is unique by the induction hypothesis and due
to the fact that each occurrence of the subword z;z, in v must come from
a subcommutator [z, z,,] in any possible basic product [u], as shown in the
proof of (a). a

We shall need another simple property of regular words.
Lemma 5.35. If a is regular and b > a for some word b, then ba > ab.

Proof. Since b > a, either b is a proper initial segment of a, or, after some
equal initial segments, the next letter in b is greater than the next letter in a.
In the latter case, any extension of b (to the right) is greater than any extension
of a. Therefore, if ab > ba, then a = bz for some word z, so that bzb > bbz.
This implies zb > bz = a, contrary to the regularity of a. a

Now we are ready to “mark” the basic products with the underlying asso-
ciative words.

Lemma 5.36. If a basic product [u] is expressed as a linear combination
of associative monomials in the z;, then the underlying word u is the unique

greatest word among these monomials.

Proof. The assertion is trivial for weight 1. If [u] = [[v],[w]], then v > w
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and, by the induction hypothesis, we have
[Pl=v+> v, and [w]=w+d Bjw;,  a,pB €L,
i j

where v > v; and w > w; for all 7, j. Then

[u] = [[v], [w]] vw + E ovw + E Bivw; + E o Bivw;

— wv— E a;wY; — E Byw;v — E o fB;w;v;.
i i 1,5

Since w is regular and v > w, we have vw > wv by Lemma 5.35, and the other
words on the right are obviously less than either vw or wuv:

viw;, <vw<ovw and  w;v <wjv <wy,
for all ¢, j (note that degw = deg w; and degv = degv; for all 7, j). a

Now suppose that M = {(g1,gz,...) is an arbitrary Lie ring with well-
ordered set of generators ¢; < g2 < .... We define the basic Lie products
in the g; using Definition 5.33 with the same lexicographical order 5.32 on
formal associative words in the g;. (In other words, basic products in the g;
are obtained from the basic products in the z; by substituting the g; in place
of the corresponding z;.)

Lemma 5.87. The basic products in the g; span M.

Proof. The commutators in the g; span M. Hence it is sufficient to express
any commutator [k] in the g; as a linear combination of the basic products in
the g;. If the weight of [k] is 1, the assertion is trivial. Let [k] = [[k:], [k2]]; by
induction on the weight and the distributive laws, both [k;] and [k;] may be
assumed to be basic products, and by the anticommutative law we may also
assume k) > k; for the underlying formal words in the g;. If the weight of [k;]
is 1, then [k] is a basic product. Let [ki] = [[k11], [k12]], where [k11], [k12] are
basic too and kyy > kya. If ki3 < k;, then [k] is basic. If k3 > ko, then we
apply the Jacobi identity to get

([[k11], [Fa2l], [k2]] = [[[k11], [k2]), [Kra]] — [[[®r2], [Ke]], [Kna]]- (5.38)

By Lemma 5.34, the underlying associative words kyy, k12 and k; are regu-
lar. We have k;3 > ky2 > ki; hence, by Lemma 5.35, ki k12 > kioknn and
kllkZ > kall, whence k = kllklzkz > klzkukg > klzkgku. Slmllarly, we have
kioks > kykiz2, whence k = kii1kioks > ky1kaoki2. We see that the underlying
associative words of both summands on the right of (5.38) are smaller than k;
hence by induction on the order for the given degree, both of them are linear
combinations of basic products. O
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Finally, we are ready to prove the main result.

Theorem 5.39. (a) The additive group of L is freely generated by the basic
products in the z;.
(b) The Lie ring L is a free Lie ring on free generators z;.

Proof. (a) By Lemma 5.37, the basic products in the z; span L. To
prove that they are linearly independent, suppose the opposite: 3= a;fui] = 0

for some distinct basic products [u;], with o; # 0 for all q. Let u;, be the

greatest among the underlying words u;; by Lemma 5.34, [u;,] is the unique

corresponding basic product. Expanding all of the [u;] as linear combinations

of associative monomials, we obtain oj,u;, + 3 B;v; = 0, where u;, > v; for
J

all j by Lemma 5.36. Since the associative monomials are linearly independent
in A, this implies o;; = 0, a contradiction.

(b) Now let F be a free Lie ring on free generators f; corresponding to
the z;. Ordering the f; correspondingly, we form the basic products in the
fi, which span F' by Lemma 5.37. The mapping f; — z; extends to a ho-
momorphism of F onto L. The images of the basic products in the f; under
this homomorphism are the corresponding basic products in the z;. Since the
latter are linearly independent by (a), this is, in fact, an isomorphism. a

Corollary 5.40. The free Lie ring L on free generators z; is multihomo-
geneous with respect to the ;.

Proof. We can view L as constructed above within A-). Every Lie product
of weight k in the z; is a linear combination of associative monomials of the
same multiweight in the z;. Therefore, Lz = L N Az for any multiweight 7.
Since A is multihomogeneous, it follows that L =  Lz. g

n

We shall need the following technical lemma. First, we define the Dynkin
operator § on associative monomials in the z; as bracketing from the left:

8(zizi, - Tiny) = [ [Ti, Tin)s -+ s Tim)
(where 6(z;) = z;); then § is extended to A by linearity.

Lemma 5.41. §(ziq1([21,. .. ,2k]) = [Zrt1, [21,.. ., Z&]].

Proof. Induction on k; the case k = 2 follows from the definition: §(z,z1) =
[z2, z1]. For k > 2, we have

5(.’Ek+1[$1, P ,.’Ek]) = 5($k+1 [.’El, [ ,:Ek_l].'Ek) —_ 5($k+1$k[$1, M ,.’Ek_l])

= [8(zrqr[21,- -+ »Thm1]), ) — 8(zRirZR[21, - - -, Zo1))-

The first summand on the right equals {[zx41, [Z1,... ,Zx-1]], z&] by the induc-
tion hypothesis. In the second, applying § to ziy1z[z1,. .. ,Tk-1], We replace
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Tk41Zk by the commutator [zi41,zx] and then regard this commutator as a
new variable. By the induction hypothesis we then have

§(zrr1zi[zr, - o s 2h1]) = [[Zre1, 2], (21, - , ZR]]-
As a result, we have
8(zrsa[zr, .. 2zh]) = [Tty [21,- -0 zr]], 2] — [[Zrar, 28], [21, - -, 2R
= [zr41, [T1,- -+ Tho1, ZTh]]
by the Jacobi identity. ]

When a formula is proved for the free generators of a free Lie ring, the
same formula holds for any elements in any Lie ring.

Corollary 5.42. Let a, € Z be the coefficients defined by the decomposi-

tion [z1,...,Zk] = Tres, nlin** Tir as a linear combination of associative
monomials in A. Then for any elements ay,... , x4 € G of any Lie ring G
we have
[akt1, [@1,. .. s ax]] = E Ur[@it1, Q1my - - -y Gkr]-
TES)

Proof. We apply the homomorphism of L into G that extends the mapping
z; — a; to the equation given by Lemma 5.41 for [zx41, [21,... ,Zi]], where,
obviously, 8(zk41[Z1, . . . Tk]) = Tres, O [Tht1, Timy - -+ Tion). ]

One can prove an assertion analogous to Corollary 5.42 for any commutator
¢ in the free generators z;: its decomposition as a linear combination of asso-
ciative monomials in the z; determines, in a similar way, the decomposition
of the Lie product [z;,, c] as a linear combination of simple commutators (and
hence the same equality holds for any elements in any Lie ring).

Exercises 5

1. Check that the structural constants [e;, ¢;] = (i — j)eiy; define a Lie Q-al-
gebra on the vector space over Q with countable basis {ej, ea,... }.

2. Let A = (z,,22) and B = (z3) be the subrings of the free Lie ring L on
free generators z),z,, 3. Show that [A, B] is not a subring of L.
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Let a be an element of a Lie Q-algebra L such that [z,a,...,a] = 0 for
all z € L. Prove that the mapping

n-1
R L B XL ORI
—_ _— e -—_— -
1 2! (n—1)!

is an automorphism of L.

. Suppose that ¢ is an automorphism of order 3 of a Lie C-algebra L such

that C(¢) = 0. Prove that v3(L) = 0. [Hint: See Example 5.13.]

Construct a Lie ring of p® elements, p a prime, which has no proper ideals.
[Hint: Consider the structural constants in Example 5.1.]

Prove that the structural constants [z, zo] = pza, (22, 23] = pz1, [23,21] =
pz, define a Lie ring L on the direct sum () ® () @ (z3) of the cyclic
groups of order p*, where p is a prime. Prove that L is nilpotent and find
the nilpotency class and the derived length of L.

Prove the analogues of Theorems 3.9 and 3.14 for Lie rings. The terms
of the upper central series of a Lie ring L are defined as follows: (L) =
Z(L), the centre of L (see §5.1), and (x+1(L) is the full inverse image
of Z(L/G(L)).

. Let L be a free Lie ring on two free generators z,y. Show that the law

83 = 0 of solubility of derived length 2 holds on the generators z,y (while
L is not soluble).

If all soluble Lie rings of derived length 2 in a variety of Lie rings U are
nilpotent of class < ¢, then show that every soluble Lie ring in U of derived
length s is nilpotent of class at most (¢*—1)/(¢—1). [Hint: Use induction
on s to prove that [LC~V, L ..., L] < L® for L € V.

N’

cs—~1

A homomorphism ¢ of the additive group of a Lie ring L is a derivation
of L if [a,b]¢ = [ap,b] + [a, by] for all a,b € L Prove that the set Der L of
all derivations of L is a Lie subring of (HomzL)(~).

Prove that for a subring H < L of a Lie ring L the centralizer Cr(H)
is always an ideal of Ny(H) and Np(H)/Cr(H) is isomorphic to a Lie
subring of Der H.
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[P. J. Higgins, 1954] If a soluble Lie Q-algebra L of derived length d satis-
fies the n-Engel identity [z,y,... ,y] = 0, then show that L is nilpotent
—

of (d,n)-bounded class. [Hint: nUse Corollary 5.28 to reduce to the case
d = 2; linearize the identity by substituting y = kyyy + - -+ + knyn, Wwhere
the y; are free generators of L and k; € Q]

Suppose that L is a Lie ring such that the factor-ring vx(L)/yx+1(L) is
finite of order n. Prove that 4xt1(L)/¥k+2(L) is finite of (k,n)-bounded
order. [Hint: Fix a bounded number of elements a; such that every coset
of Yx+1 in the additive group of 4 is equal to one of the [a;,,... ,a:] +
Yx+1. For any b € L express [a;,...,a;,b] as a linear combination of
the commutators of the form [b,a,,,...,a;]; every such commutator is
congruent to some [as,, ... ,ds,,a; ] modyrya.]

Suppose that L is a nilpotent Lie ring of class ¢ such that the factor-ring
(L) /x+1(L) is finite of order n. Prove that (L) is finite of (n,c)-
bounded order. Use 11 to show that Cp(yx(L)) is then a nilpotent ideal
of class k whose additive group has (n, k, c)-bounded index in L.

State and prove the Lie ring analogues of Exercises 3.1, 3.6, 3.11, 3.12,
3.16, 3.18, 3.20, 3.21.



Chapter 6

Associated Lie rings

The Hall-Witt Identity,
[a,b7Y,¢]® - [b,c7, ] [c,a), B2 =1,
which holds in any group, strikingly resembles the Jacobi identity
[a,b,c]+ [b,c,a] + [c,a,b] =0,

which is a law in Lie rings. The commutator formula [ab,c] = [a,c]‘[b, ] is
also similar to a distributive law. It is natural to try to define a Lie ring
with addition based on the group multiplication, and with Lie products based
on taking group commutators. Lie rings may be easier to study, as more
linear objects; for example, an automorphism of a Lie algebra can be regarded
as a linear transformation, which has eigenvectors over the extended ground
field. A Lie ring method of studying groups consists of translating conditions
into the Lie ring language, obtaining (or using) results on Lie rings, and then
translating the conclusions into the group language.

In this chapter we introduce one of the Lie ring methods based on the so-
called associated Lie rings. This will be one of our main tools in the subsequent
chapters. One of the advantages of this method is that every nilpotent group
has an associated Lie ring, which is nilpotent of exactly the same nilpotency
class. We shall also discuss the difficulties that arise from the fact that the
associated Lie ring “forgets” some important information about the group, like
its derived length.

§6.1. Definition

First we fix some notation. Let G be a group and let v; = v;(G) be the
terms of the lower central series of G. Let @ € «;/v;41 denote the image
of @ € v; in v/ Y41

Definition 6.1. The additive group of the associated Lie ring L(G) of a
group G is the direct sum

um=@wmm

of the additively written factors of the lower central series of G. In particular,
for &1, %2 € vi/¥it1, by definition, £ + %2 = 21227iy1 = F1Zz € 7:/Yit1- The
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Lie product of the elements T € ~;/viy1, ¥ € 7¥;/7v;+1 is defined to be

(£,7] = [z, y]virier € Yirs [ YVirin1-

To make this clear: the Lie product of the elements £ = zv;11 € ¥/7in1
and § = yvy;41 € v;/vi+1 on the left is defined as the image of the group
commutator [z,y] in ¥it;/¥i+;+1. (Note that it can well happen that [Z,7] = 0
in L(G), although [z,y] # 1 in G, simply when [z,y] € v;4+;+1.) Then this
bracket multiplication is extended to the direct sum L(G) = @;(i/vi+1) by
the distributive laws.

Brackets are used both for commutators in the group G and for the Lie
products in L(G); it will, however, always be possible to recognize the meaning,
even if both appear in the same formula. We have yet to prove that everything
is all right in Definition 6.1.

Theorem 6.2. Definition 6.1 correctly defines the structure of a Lie ring
L(G).

Proof. Recall that [v,, 7] < 7s4: for all 5,¢ € N by Corollary 3.5. Therefore,
for z € 4; and y € «;, the commutator [z,y] belongs to [yi,7;] < 7i+;, so that
we really can take the image of [z,y] in 4iy;/7itj+1. We must also show that
the result does not depend on the choice of the representatives  and y of the
cosets. In other words, if z'y,y1 = zv;11 and y'y;41 = Y741, we must show
that [z, y']Yitj+1 = [2,y]Yi+;+1. We have ' = zu for some u € 7,41, and
y' = yv for some v € 4;;1. By the commutator formulae 1.11, we have

[zl»yl]7i+j+1 = [zu»yv]7i+j+1 = [z»yv][z»yv»u][u»yv]7i+j+1

[z, yol7it i

[:l:, ’D] [:l:, y] [:l:, Y, v]7i+j+1

= [z»y]7i+j+l»
because of the inclusions [vys,%] < 4s4:. Thus, the bracket multiplication
in L(QG) is well-defined.

The distributive laws are used to extend the multiplication to the direct
sum from the summands. Therefore, to verify these laws on L(G), we need
only take sums of elements in the same summand. Let £,Z; € 7:/7i+1 and
7 € 4j/v;+1. By the definition,

(1 4 Z2,7) = [T122, Y]yirin = [21,9][21, 9, Z2)[22, y]yigsh

(21, ][z, y]¥i4in

[fl»y] + [52;1'7]»
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since [Z1,Y, 2] € Yitj+i < Yitj+1- Lhe other distributive law is verified in a
similar way. It follows that —% = 21y, and [z%,y]vit 501 = [z, ¥*] Y4501 =
k(z, ] for all k € Z.

Both the anticommutative law and the Jacobi identity are linear in their
arguments. It is therefore sufficient to check that they hold for the elements in
the direct summands. For £ € 4;/vi41 we have [z,z] = 1 in the group, whence
[£,2] = 0 in L(G). To prove the Jacobi identity for Z € vi/vi+1, T € V;/7j+1,
Z € 4% /7k+1, we use the Hall-Witt Identity 3.1:

Lovyigirerr = (2,975 2%y, 27 2 (2, 270, y] ™ Yig sk
= [:l:,y_l,z][y,z—l,:E][z,:l:—l,y]’y,-+j+k+1,

where we could omit the conjugating elements, since the commutators involved
belong to v;4;+x whose image in G/¥it;+k+1 18 in the centre. Further, we
gradually switch to operations in L(G):

0 = [z,y7" 2lYigjrbrr + 05 27 2lvigsiansr + 2,27, Y] virinrn

Iz, ¥~ Wiri+r, 21+ [[vs 2 1yizrrrs 2] + [[2, 27 1 Yerin, 9]

= —[5,5.4- 5,73 - 52,9

(The reader will recognize where the Lie ring brackets replace the brackets of
group commutators.) Hence [Z,7, 2] + [§, 2, Z] + [2, Z,§] = 0, as required. O

Remarks. 6.3. It is clear that L (G /N2, 7(G)) = L(G). So the associ-
ated Lie ring reflects only the properties of the (residually) nilpotent factor-
groups of the group. For example, if G = [G, G, then L(G) = {0}.

6.4. The associated Lie ring L = L(G) of a group G is always Z-graded,
if we put Ly = {0} for all k <0 and Ly = y&/¥k41 for k > 1 (or “N-graded”).
This follows directly from the definition of the multiplication in L(G).

6.5. The associated Lie rings of two non-isomorphic nilpotent groups may
be isomorphic, as in the following example.

Example 6.6. Let Dy = <a,b |at=0b2=1, a*= a3> be the dihedral
group of order 8. Put ¢ = [a, )] = a?; then L(Ds) is a vector space over F; with
the basis {@,b, ¢} and structural constants [@,0] = ¢, [a,¢] = [b,&] = 0. The
associated Lie ring of the quaternion group Qs = (u,v |u* = vt =1, u? =2,
u® = u®) is a vector space over F, with basis {@, ¥, ¥ = [u, v]} and structural
constants [@,?] = @, [4, @] = [v,@] = 0. We see that L(Qs) is isomorphic
to L(Ds), although the groups are not isomorphic.
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§6.2. Basic properties

First we prove the following useful, if technical, lemma. We continue to
use the convention on the notation @ € +;/¥iy1 and ¥ = vi(G).

Lemma 6.7. Let L(G) be the associated Lie ring of a group G.

(a) For any a@; € G/~ and for any commutator » of weight k, we have

s(d@y,... ,ax) = x(ar,. .. ,6K)%k41,

where the right-hand side is the image of the group commutator »(ay,... ,ax)
in Y /vee1 and the left-hand side is the Lie ring commutator in the a@;. In
particular, [@y,...,d3k] = [a1,... ,ax] k41
(b) The additive subgroup 4 /vi+1 is spanned by the Lie products [y, .. . , ax)
where @; € v1/72, that is, e [Ye+1 = [11/72y -+, M/72]-
k
(c) The Lie ring L(G) is generated by y1/7,.

(d) %(L(G)) = s@k(%/’rm)-

Proof. (a) We use induction on the weight k. If k = 1, then »(a) = @ =
a1y2 = #(a1)y2. Let s = [s1, 365) with 3¢ of weight k;, ¢ = 1, 2. Then by the
induction hypothesis

w(@,. .. @) = Pa(ai, ..., aq ), 22(a, - a5, ) T41],

where on the right s¢;4x,+1 is the image of the corresponding group commutator
in v, /Yk+1, ¢ = 1, 2. By the definition of Lie products in L(G), the right-
hand side is the image of the group commutator s(ay, ... ,ax) in 4k /Y41, as
required. In the special case of the simple commutator, this argument can be
written in one line, with outer brackets for Lie products and inner for group
commutators:

[(_1-1, . ,dk] = [[al, a2]73, (_1:3, . ,dk] [[al, ag,a3]74, (_1:4, N ,(-l-k] =...

= [ala s aak]7k+1'

(b) By Lemma 3.6, the group +; is generated by the simple commutators
[a1,...,ax], a; € G. Hence the additive subgroup ~x/vx+1 of L(G) is generated
by their images [a1,. .. ,ax]Yk+1 in x/7k+1, and the result follows from (a).

(c) This follows directly from (b), since L(G) = @i=1(¥:/Vit+1)-

(d) We have [yu/Yut1, Yo/Yo41] < Yutv/Yutvtr for all w,v € N by the
definition of multiplication in L(G), whence 7x(L(G)) < @®s>i(Ys/7Vs+1). The
reverse inclusion follows from (b): v,/7st1 = [11/72, - - - »M/72) < ¥:(L(G)) <

s
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7(L(G)) for all s > k. O

Corollary 6.8. The associated Lie ring L(G) is homogeneous with respect

to the generating set v /2, with v /Yr+1 being the homogeneous component of
weight k. |

The following theorem establishes some connections between a group and
its associated Lie ring.

Theorem 6.9. Suppose that G is a nilpotent group and let L(G) be the
associated Lie ring of G.

(a) Then L(G) is nilpotent, and the nilpotency class of L(G) is ezactly the
same as the nilpotency class of G.

(b) If G is finite, then |G| = |L(G)|.

(c) For every automorphism ¢ € AutG, the action of ¢ on the factor-
groups vi[vit1 induces by linearity an automorphism of L(G).

Proof. (a) By Lemma 6.7(d) 7(L(G)) = @®s>i(7s/¥s+1) for all k € N. If
Ye+1(G) = 1, then, of course, 7.4+1(L(G)) = 0. Conversely, if ya+1(L(G)) = 0,
then 4441/94+2 = 0 or, in other words, 4441 = 44+2- In a nilpotent group, this
implies 4441 = 1 (Corollary 3.15).

(b) By the definition of L(G) = @;(vi/7i+1) and by Lagrange’s Theo-
rem, both the order of L(G) and the order of G are equal to the product
1=, |¥i/vi+1|, where ¢ is the nilpotency class.

(¢) The induced mapping @ is an automorphism of the additive group
L(G) = ®:(7:i/4i+1), since ¢ induces automorphisms of the direct summands.
Since & is extended to the sum by linearity, as the Lie multiplication is, it
suffices to check that & preserves Lie products of elements from the summands.
For Z € vi/v;+1 and 7 € v; /%41, we have

(2,917 = ([z, ¥]Yeri+1)? = [2,9])%Yizrit1 = [2%, ¥ wiri1 = (25,77,

as required. g

Remarks. 6.10. Unlike the nilpotency class, the derived length of L(G)
may not coincide with that of G. This sometimes makes it difficult to recover
information about the group from the result on its associated Lie ring. One
can, however, prove that the derived length of L(G) is not greater than that
of G (Exercise 6.1).

6.11. The induced automorphism of L(G) may well be a trivial one, for a
non-trivial ¢ € Aut G. For example, every inner automorphism of G induces a
trivial automorphism of L(G). This sometimes makes it difficult to translate
a hypothesis on a group and its automorphism into the language of Lie rings;
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another trouble is that the number of fixed points may become greater. In
general, the order of the induced automorphism @ is a divisor of ||, since
¢ — @ is a homomorphism of Aut G into Aut L(G). It is usual to denote
the induced automorphism of L(G) simply by ¢; then (¢) acts on L(G) as
automorphisms (but not necessarily faithfully). If, however, the order of ¢ is
coprime to the order of a finite nilpotent group G, then () acts faithfully on
L(G) and |Crc)(¢)| = |Ca(w)| (Exercise 6.3).

§ 6.3. Some applications

We can now reap the fruits of the hard work done in verifying the defini-
tions. Using the associated Lie rings, we prove here a few useful lemmas on
linear properties of nilpotent group. Most of them could be proved directly, but
using associated Lie rings is an easier way, with some “economy of thought”.
One can say that the required commutator calculations were carried out once
and for all in verifying the definition of L(G).

Lemma 6.12. Let v; = v;(G) denote the terms of the lower central series
of a group G.

(@) If (m/72)™ =1, then (vi/Yrt1)" =1 for all k € N.

(b) If G is nilpotent of class ¢ and (m1/72)" = 1, then G = 1.

(c¢) If G is nilpotent of class ¢ and G is generated by elements of order

dividing n, then G™ = 1. If, in addition, G is generated by r elements, then
the order of G is (n,c,r)-bounded.

Proof. (a) The hypothesis can be rewritten in the additive group of the
associated Lie ring L(G) as ny; /2 = 0. Then, for the a; € 71 /72, we have

nla@,... ,a] = [na@,as,...,a8] = [0,as,...,ax] = 0.

By Lemma 6.7(b), the additive group vi/7k+1 is spanned by the [@,... ,d].
Hence nyi /7141 = 0, or, in multiplicative notation, (yx/vx+1)" = L.

(b) We prove by induction that G™ < 441, the case k = 1 being the
hypothesis. For k > 1, by the induction hypothesis and by (a),

G™ < (G™) < (7)™ < 1

as required. In particular, G™ < .41 = L.

(c) The images of the generating elements in 7, /7, clearly generate this
abelian group. Hence (71/72)" = 1, and G™ = 1 by (b). When G is r-gene-
rated, to estimate the order, it suffices to bound the |v;/7i;1|- The additive
subgroup 7i/4i+1 of L(G) is generated by the simple commutators in the r
generators of G/v, by Lemma 6.7(b); there are r* such commutators. Since
n%i/¥iq1 = 0 by (a), we have |yi/7ip| < n7'. O
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Lemma 6.13. Let » be a commutator of weight s. For any elements

a1,... ,a, in any group G and any ky, ... ,k, € Z we have
w(ak,. .. ,a¥) = x(ay,... ,a,) % 11 =,
J
where the »; are some commutators of weight > s+ 1 in the a; and their
inverses. In particular, [af,... ,a%] = [a1,... ,a,]""* (mod v, (G)). If G
is nilpotent of class s, then 3(a¥ ...  a*) = s(ay,... ,a,)"1%; in particular,
then [a¥,... a¥] = [ay,... ,a.)f1.

Proof. Put H = (a1,... ,a,), and let @; denote the image of a; in H/~,(H).
For the Lie ring commutators in L(H), we have

%(kldl, SR ,ksds) = kl s ks%(dl, B ,d,).
By Lemma 6.7(a), this can be rewritten in terms of group commutators as
(@b, . a*) = s(ay,... ,a)" ¥R, b€y (H).

The element h € 7,41 (H) equals the required product []; »; by Lemma 3.6(c)).
g

We record here the following elementary fact.

Lemma 6.14. For any elements z,y in any nilpotent group of class < 2,
we have (zy)™ = "y [y, 2]~ V/2 for any n € N.

Proof. Induction on n; for n = 1 we have zy = zy[y,z]°. For n > 1, we
use the induction hypothesis, Lemma 6.13, and the fact that all commutators
lie in the centre:

(zy)n — (zy)”"lzy — zn—lyn—l[y, z](n—l)(n—Z)/Zzy
— zn—lyn—lzy[y,z](n—l)(n—Z)/Z
= znyn[yn—l»z][y»z](n—l)(n—Z)/z

= 2"y"[y, )"y, 2] TN

z'n.y'n.[y’ z]n(n—l)/Z

The following lemma is from [A. I. Mal'cev, 1958].

Lemma 6.15. Let G be a nilpotent group of class c. For anym € N, every
product of m°th powers of any elements in G is an mth power in G: for any
s € N and any ay,... ,a, € G there is b € G such that a7* ---a™ = b™.

s
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Proof. Induction on the nilpotency class ¢; if ¢ = 1, then the group is
abelian and a7*---a]* = (a1---as)™ For ¢ > 1, we consider the subgroup
H = (a*,...,a7). By the induction hypothesis applied to H/v.(H), we have

<

ol = (@) (@) = b, (6.16)

where g € 7.(H). Since G is nilpotent of class ¢, we can regard ~.(H) =
Ye(H)/7e+1(H) as an additive subgroup of L(H) spanned by commutators of
weight ¢ in the generators a]* (Lemma 6.7(b)). For any such commutator, we
have, by Lemma 6.13,

:,11,... ,a:’:] = [ail’_” ;aic]mc — hm,

(a
where h € v.(H) < Z(G). So v.(H) is generated by the mth powers of
some elements from Z(G) and therefore consists of the mth powers of some
elements from Z(G). Then g = 2™ for some z € Z(G) in (6.16), and hence
a? - -a™ = bmg = b™2™ = (bz)™, as required. a

Remark 6.17. N.Blackburn [1965] proved that for every prime number
p and every ¢ € N there is a (p, ¢)-bounded number b(p, ¢) such that in any
nilpotent p-group of class ¢, for any k € N, every product of p*+*®<)th powers
of elements is a p*th power of some element.

Exercises 6

1. Prove that the derived length of L(G) is not greater than that of G.
2. Prove that ¢ — @ is a homomorphism of Aut G into Aut L(G).

3. Suppose that G is a finite nilpotent group, ¢ € AutG, and (|¢|, |G|) = 1.
Prove that |Cr6)(¢)| = |Ca(p)|. [Hint: Use Lemma 2.11.]

4. Suppose that ¢ is an automorphism of a group G such that ¢ acts trivially
on G/v,(G). Prove that ¢ acts trivially on every factor-group vi/¥i41. [Hint:
Consider the induced automorphism of L(G) = (m1/72).]

5. Suppose that G = N X H is a semidirect product of N < G and H < G.
Construct a subring of L(G) which is naturally isomorphic to L(H).

6. Prove that a homomorphism of a group G onto a group H induces naturally
a homomorphism of the associated Lie ring L(G) onto L(H).

7. Suppose that G is a nilpotent group of class ¢ such that 7(G)/vk+1(G) is
finite of order n. Prove that 44(G) is finite of (n, c)-bounded order. [Hint:
Apply Exercise 5.14 to L(G).]
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[B. Hartley and T. Meixner, 1980] Suppose that a finite p-group P of odd
order admits an automorphism ¢ of order 2 with |Cp(p)| = p™. Prove
that P has a subgroup of (p,m)-bounded index which is nilpotent of class
2. [Hint: Show that P, = [P,¢] is generated by elements inverted by ¢.
Consider L = L(P;) and show that ¢ acts trivially on y2x(L)/v2k4+1(L) for
all k¥ € N. Use Lemma 2.11 to estimate the nilpotency class. Use 7.]

Prove that the associated Lie ring of the unitriangular group UT,(F,) (see
Exercise 2.2) is isomorphic to the Lie ring of null-triangular matrices

0 >k
ntn(Fp) = LS Fp

0 0

(where the addition is component-wise and the Lie product of matrices A, B

is [A,B] = AB — BA). [Hint: A coset of y4+1(UT,(F,)) has the form

1 0 ...0a 3k
1
\ Op—k

\\ 0 * €,

0 10

Map it to

Apek € ntn(Fp)']

0

Produce an example of a nilpotent group G with L(G)® = 0, but G # 1.

Let G be a group and p a prime number. Show that the p-isolators of
the terms of the lower central series defined as G; = {z € G | " €
4(@) for some n = n(z)} are subgroups (see Theorem 10.19) and satisfy
the inclusions [G;, G;] < Giyj. Define the Lie ring L = @;(Gi/Giy1) based
on the G; in the same way as L(G) is based on the 7;(G). Prove that if G
is nilpotent and has no elements of order p, then L is nilpotent too, and the
nilpotency class of L coincides with that of G.
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Regular automorphisms of Lie rings

The theorems of G. Higman, V. A. Kreknin and A.I. Kostrikin on regular
automorphisms of Lie rings can be viewed as combinatorial facts about (Z/nZ)-
graded Lie rings: they are actually proved as such, and it is in this form that
they are used in studying p-automorphisms of nilpotent p-groups. We shall
first prove Kreknin’s Theorem for graded Lie rings using the varietal crite-
rion from §5.2, which simplifies the proof to a few lines. (A longer version
which gives an explicit upper bound for the derived length is indicated in the
exercises.) Then nilpotency is derived from solubility in the case of the auto-
morphism of prime order, again for graded Lie rings. Free Lie rings allow us
to derive the required combinatorial consequences for arbitrary Lie rings. The
theorems on Lie rings and finite nilpotent groups with regular automorphisms
are also obtained as corollaries of these combinatorial facts.

§7.1. Graded Lie rings

For the definition of graded Lie rings, see §5.1. We begin with a version of
a theorem of V. A. Kreknin [1963].

Theorem 7.1. Let n be a positive integer and suppose that L = Lo @
Li® - ® Ly~ is a (Z/nZ)-graded Lie ring with components L, satisfying
(Li, L;] € Ly, where i + j is a residue mod n. If Lo = 0, then L is soluble
of n-bounded derived length: L") = 0 for some function k(n) depending only
on n.

We shall refer to k(n) (meaning the minimal possible value) as Kreknin’s
function. The varietal criterion of Theorem 5.25 simplifies the proof to a few
lines, but gives only the existence of the function k(n) (see Exercise 7.1 for
another direct, if more technical, proof which gives an explicit upper bound

for k(n)).

Before proving Theorem 7.1, we note that the class of (Z/nZ)-graded Lie
rings is a variety of algebraic systems that are Lie rings with additional unary
operations of taking the components of the elements. More precisely, consider
the class B(n) of Lie rings L with unary operations f;, i =0,1,...,n— 1,
satisfying the following laws (in addition to the laws of Lie rings):
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filz £y) = fi(z) £ fily) for all i;
z= folz)+ filz) + -+ far(2);
fi(fi(z)) =0 for ¢ # j;
filfi(z)) = fiz)  for all 4
fivi([fi(2), fi(z)]) = [fi(z), f;(z)],  where i+ j is a residue mod n.

The first four laws ensure that L = fo(L)® fi(L)®: - @ fn-1(L) with f;(L) being
additive subgroups of L. Indeed, by the first law, each f; is an endomorphism
of the additive group of L, and hence f;(L) is an additive subgroup. The sum
of the f;(L) equals L by the second law, and the sum is direct:

file) =2 fily) = fi(z) = fi(fi(2)) = 2_ fi(fi(w:)) = 0
i#s i#]
by the third and fourth laws. The fifth law means that this decomposition is
a (Z/nZ)-grading with components f;(L).

Conversely, if L is a (Z/nZ)-graded Lie ring, then every element ! € L
admits the unique decomposition ! = lp + {; + -+ + l,—1 with components
l; € L;. Tt is easy to see that if we define f;(!) = l;, then these unary operations
satisfy the above laws, so that L € (n). We fix the notation /; for f;(I) within
this section.

Considering (Z/nZ)-graded Lie rings as objects in U(n), we are allowed
to deal only with homogeneous subrings and ideals, that is, closed under all
operations, so that such a subring or ideal H must be equal to the direct
sum of the H N L;. (The words “homogeneous” and “component” here have
different meanings from those in §5.1.) It is straightforward to see that if
H=Y"1HNL; and K = Y7 KN L;, then

n—1 n—-1
[H,K]= > [HNL;, KNnL;j]=>_[H, K]|NL,. (7.2)

i,j=0 s=0

In particular, the terms of the (abstract) derived and central series are homo-
geneous.

Proof of Theorem 7.1. The Lie ring L satisfying the hypothesis belongs
to the subvariety 20(n) of B(n) defined by the additional law fo(z) = 0. It
suffices to prove that the variety 20(n) is soluble, which includes the existence
of an upper bound for the derived lengths, the required function k(n) (see
§1.3 and §5.2). By Theorem 5.25 (and Remark 5.26), we need only prove
that every non-trivial Lie ring L # 0 in 20(n) is distinct from its derived Lie
subring: L # [L, L]. Suppose the opposite: L = [L, L] # 0 for L € 20(n). We
shall use induction on k=0, 1,..., n — 1 to show that then

L c (Lk+1; s aLn—l); (73)
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the last step, for k = n — 1, being L = 0, a contradiction to L # 0. (The
right-hand side of (7.3) is a Lie subring generated by Li41,... , Ln-1, which is
homogeneous no matter whether the additional operations f; are used or not.)
We need an elementary number-theoretical lemma.

Lemma 7.4. Suppose that a,b,c are integers such that 1 < a < n-—1,
1<b<n—-1landl<c<n-—1. Ifa+b=c(modn), then either both a > ¢
and b> ¢, or botha < cand b<c.

Proof. Since a < n and b < n, we have a + b < 2n. Therefore, either
a+b=c,or a+ b= c+n. Inthe first case, a < ¢ and b < ¢. In the second
case, both numbers are greater than ¢, because if one of them were less than
¢, then their sum would be less than c + n, since the other is less than n. O

Now we prove (7.3). For k =0, we have L C (L,,... ,L,-1) since Lo = 0.

For the induction step, assuming that L C (Lg,...,Ln1), we need only
show that Ly C (Lgt1,...,Ln-1). Since L = [L, L], every element is a
linear combination of simple commutators of weight > 2 in the generators
from Ly,... ,Ln—y (see §5.1). In particular, every element I/, € L; is a linear
combination of simple commutators of the form

[®i),- .-, T2], (7.5)

where t > 2, z; € L;), k<i;<n—1lforj=1,...,tand i+ -+ =
k (mod n). To lighten notation, we adopt here the following convention.

Convention 7.6. The indices are used only to indicate the components
L; which the elements z; belong to (so the same symbol may denote different
elements). Then a commutator in the z; belongs to the component L., such that
m is the mod n sum of the indices of the elements involved in the commutator.

For every commutator (7.5), let y, € L, denote its initial segment of length
t — 1. If s =0, then y, = 0 and the commutator (7.5) equals 0. If s # 0,
then i; # k and hence i; > k. Then, by Lemma 7.4, we also have s > k, in
which case [y,, =;,] € (Lk+1,- .. , Ln-1), as required. This completes the proof
of Theorem 7.1. a

Now we turn to the special case of Theorem 7.1 where n = p is a prime
number. Then a stronger conclusion holds: the Lie ring is nilpotent of p-
bounded class [G.Higman, 1957]). In view of Theorem 7.1, it is sufficient to
prove a version of a theorem of V. A. Kreknin and A. I Kostrikin [1963] that
solubility implies nilpotency.

Theorem 7.7. Let p be a prime number and suppose that L = Lo &
L@ - ® Ly-1 is a (Z/pZ)-graded Lie ring with components L, satisfying
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[Li, L;] € Lit; where i+ 3 is a residue mod p. If Lo = 0 and L is soluble of
derived length d, then L is nilpotent of (p,d)-bounded class.

Proof. As above, the (Z/pZ)-graded Lie rings with Ly = 0 form the variety
20(p). By (7.2), the terms of the (abstract) lower central and derived series
of Lie rings in 20(n) are homogeneous (normal subsystems). Therefore, by
Corollary 5.28 and Remark 5.30, it is sufficient to prove that if L € 20(p) is
soluble of derived length 2, then L is nilpotent of p-bounded class. We shall
actually prove that L is then nilpotent of class at most p. Since L is generated
by the components L;, it is sufficient to prove that

[zin Ligyvny zi,ﬂ.l] =0 (78)

for any z;, € L;, . Here, again, we adopt convention 7.6.

The idea is in the fact that the initial segment [z;,, z;,] belongs to the
abelian ideal [L, L], so that the rest of the elements may be permuted arbi-
trarily without changing the commutator (7.8). Indeed, [a,b,c|. = [a,¢c,b] +
[a,[b,c]] = [a,c,b),if a € [L, L]. It is an elementary fact about residues mod p
(see Lemma 7.9 below) that, given any p — 1 non-zero residues, there is a
subset of them with a prescribed sum mod p. So the value — i, —i; mod p
can be obtained as a sum of some of the residues i3,... , i,41. (We allow an
empty subset in the case ¢; + ¢, = 0 (mod p).) Transferring the corresponding
elements z;, to place them right after z;, in (7.8), we obtain a commutator
equal to (7.8) that has an initial segment with zero mod p sum of the indices;
this initial segment belongs to Lo (see 7.6) and hence equals 0. a

It remains to prove the number-theoretic fact used above.

Lemma 7.9. Let p be a prime number and let iy,..., ix be non-zero
elements of (Z/pZ) (not necessarily distinct). We form the set

M={Eis|5’g{1, 2,...,k}}

s€S

(where the sum is 0 for S = &), Then either M = Z[pZ or |M|> k+1. In
particular, if k =p—1, then M =Z/pZ.

Proof. We proceed by induction on k. Let M(s) denote the set of all sums
for k = s, that is, built on {¢1,... ,i,}. For k = 1, we have |M(1)| = [{0, 1 }| =
2, since 7; # 0. Next, if any of the sums s + i34, s € M(k), does not belong
to M(k), then |M(k+1)| > |M(k)|+1 > k+2 by the induction hypothesis. If,
however, s + ix4+1 € M(k) for all s € M(k), then starting from 0 we find that
all elements 0, txt+1, 20541,. .. ,(P—1)ix41 belong to M (k). These elements are
all distinct since ix41 # 0 by the hypothesis; hence |[M (k)| = |M(k + 1)| = p,
that is, M(k+ 1) = Z/pZ. O
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Theorems 7.1 and 7.7 together yield the following [G. Higman, 1957].

Corollary 7.10. Let p be a prime number and suppose that L = Ly &
Li® - ® Ly is a (Z/pZ)-graded Lie ring with components L, satisfying
[Li, L;] € Liyj, where i+ j is a residue mod p. If Lo =0, then L is nilpotent
of p-bounded class, at most h(p).

We shall refer to h(p) (meaning the minimal possible value) as Higman’s
function. The exact (best possible) values of h(p) are known only for a few
small primes p = 2, 3, 5, 7. We shall need the values A(2) and h(3) in Chap-
ter 12.

Lemma 7.11. (a) A(2) = 1;
(b) R(3) = 2.

Proof. (a) If L = L, is a (Z/2Z)-graded Lie ring with Lo = 0, then
[L,L] = [Ll, Ll] g Lo = 0, so that h(2) =1.

(b) Suppose that L = L, & L, is a (Z/3Z)-graded Lie ring with Lo = 0.
To prove that h(3) < 2, we need only show that [z, , i, z;,] = 0 for any z;, €
Ly, L, (we use Convention 7.6). We have [z1,z1,21] € Lo = 0, [z2,22,22] €

Lo =0, [z1,2,2;] = —[z2,21,2;] € [Lo,z;] = 0. The two remaining cases are
dealt with using the Jacobi identity: [z, 21, z2] = [21,Z2, 1] +[21, [21,22]] = 0,
and (29,22, 21| = 22, 21, 22] + [T2,[Z2, 21]] = 0. ]

Remarks. 7.12. The original proof of V. A. Kreknin [1963] gives an upper
bound k(n) < 2"! for k(n) in Theorem 7.1 (Exercise 7.1).
7.13. D.J. Winter [1968] proved that a finite-dimensional (Z/nZ)-graded
Lie algebra L is soluble under a weaker condition [L, Lg,...,Lo] = 0. He
N e’

raised the question whether there is a function of m and n bounding the
derived length of such a Lie algebra. An effective proof, which is also valid for
infinite-dimensional algebras, was found in [E.I. Khukhro and P.Shumyatsky,
1995] (Exercise 7.2).

7.14. Exercise 5.9 gives (p? — 1)/(p — 1) as an explicit upper bound for
the nilpotency class in Theorem 7.7 based on the bound p for d = 2. This
bound can be slightly improved to ((p—1)¢—1)/(p— 2), by a direct induction
argument [V.A. Kreknin and A.I Kostrikin, 1963].

7.15. The existence of h(p) was proved by G. Higman [1957] as a pure ex-
istence theorem. We followed here the completely different effective proof from
[V.A.Kreknin, 1963] and [V. A. Kreknin and A. L. Kostrikin, 1963]: the bounds
from Remarks 7.12, 7.14 yield an explicit bound A(p) < ((p—1)*" —1)/(p—2).
These bounds, however, are believed to be far from best possible. G. Higman
[1957] constructed examples showing that h(p) > (p? — 1)/4 and conjectured
that, in fact, the equality holds for odd p. He confirmed this conjecture for
p = 5 (the easier cases p = 2 and p = 3 must have been known earlier, see
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Lemma 7.11). I. Hughes [1985] and B.Scimemi (unpublished) confirmed that
h(7) = 12.

§ 7.2. Combinatorial consequences

Basing them on the results on graded Lie rings, we derive consequences that
are valid for any Lie rings. Then we derive combinatorial consequences for Lie
rings with automorphisms of finite order. Recall that é,(z1,...,z20) = 0 is
the law of solubility of derived length n (see §5.2) and that k(s) is Kreknin’s
function as in Theorem 7.1.

Theorem 7.16. Let n be a positive integer. Suppose that z;,,. .. s Ti ()
are (not necessarily distinct) elements of an arbitrary Lie ring L with formally
assigned indices. Then the commutator by (zi,, . . . ,zizk(n)) is equal to a linear
combination of commutators all with the same entry set and each having a
subcommutator with zero modn sum of the indices.

Proof. First, let L be a free Lie ring with free generators z;,, =iy, ..., %i ;-
Let L; be the span of all commutators in the z;, such that the sum of the indices
of the entries is ¢ modn. Since L is multihomogeneous with respect to the free
generators (Corollary 5.40), we have the decomposition L = Lo® L& @ Ln-1.
Obviously, [L;, L;] € L;tj, where ¢ + j is taken modn, so this decomposition
is a (Z/nZ)-grading. The ideal I generated by L is also multihomogeneous;
hence L/I is also (Z/nZ)-graded, with components being the images of the
L;. Since (L/I)o = (Lo + I)/I = 0, the image in L/I of Sx(n)(is, - - s Tiam)
is 0 by Theorem 7.1. In other words, di(n)(zi,, ... ,:v,-zk(n)) € I, and therefore
Sr(ny (i - - - ,z;zk(n)) is a linear combination of commutators each involving a
subcommutator from Lg. Since L is multihomogeneous with respect to the z;,,
all of these commutators can be assumed to have the same entry set.

To prove the same equality for arbitrary elements in any Lie ring, we ap-
ply the homomorphism, extending the mapping of the free generators to the
elements with corresponding indices, to the equality proved for a free Lie ring.

a

Essentially the same argument allows us to derive a similar consequence of
Corollary 7.10 (recall that A(p) is Higman’s function).

Theorem 7.17. Let p be a prime, and suppose that z;,, Tiy,. .. , Ty, ., T€
elements of an arbitrary Lie ring L with formally assigned indices. Then the

commautator (z;,,. .. ,:v,-h(P)H] is equal to a linear combination of commutators
all with the same entry set and each having a subcommutator with zero mod p
sum of the indices. ]

Now let L be a Lie ring with an automorphism ¢ of finite order n. We ex-
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tend the ground ring by a primitive nth root of unity w, forming L= L®zZ[w].
Then ¢ can be regarded as an automorphism of L (see § 5.1). The above results
on graded Lie rings can be applied because I “almost” decomposes into the
sum of analogues of eigenspaces with respect to ¢ (similarly to Example 5.13).
To wit, we define the following additive subgroups of L:

Li={leL|l*=ul}, i=0,1,...,n—1.

These additive subgroups resemble components of a (Z/nZ)-grading, as the
following lemma shows.

Lemma 7.18. (a) [Li, L;] C Liy; where i + j is a residue mod n;
(b)nLC Lo+ Li+ - + Ln-r.
Proof. (a) For any I; € L; and l; € L; we have [l;, [;]* = [If,l]] =

[w'li, W] = W[l I;]. Since w™ = 1, this means that [i;, ;] € Liy;, as
required.

~ n=1 \ A .
(b) Foranyl € L,put ;= ¥ w™*I¥ ,fori=0,1,... ,n—1. Then [; € L;:
s=0

n-1 n n
e N et
2= w T =S 0T = Y T = Wi,
s=0 =1 t=1

. . 01,0
since w™"¢" = w0¥ . We have

-1 n-1n-1

Su-Tror =Y (S )zv’ ~ nl,

=0 1=0 s=0 =0
whence (b) follows. Here we used the facts that ¥7°) w® = n and that
Tdw™ = 0if s Z 0(modn) (to see the latter, note that the sum does
not change when multiplied by w*® # 0). O

Now we derive the combinatorial consequences for Lie rings with auto-
morphisms of finite order that will be used for proving the main results on
p-automorphisms of finite p-groups.

Corollary 7.19. Suppose that L is a Lie ring with an automorphism ¢ of
finite order n.

(a) (Kreknin’s Theorem) Then (nL)*™) C j4(CL(y)).
(b) (Higman’s Theorem) If n is a prime, then Yhmy41(PL) C ia(CL(¥)).

Proof. By Lemma 7.18(b), (an)(k(”)) C(Lo+ Ly + -+ Lpy)*). The
right-hand side is contained in the ideal i4(Lo) by Lemma 7.18(a) and Theo-
rem 7.16 applied to commutators 64, in arbitrary elements z; € L; (under

convention 7.6). Since Lo € C3(p), we obtain that (an)(k(”)) c id<CZ(SO)>~
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We have the following equalities under the identification of L as L ® 1 in L
(see (5.15) and Example 5.16):

(nE)(k('n)) = (nL)(k(n)) Rz Z[w] = (nL)(k(n)) — (ni)(k(n)) N(L® 1);

a(C2(0)) = a(CLlp)) ®221] = (Cilp) = (Cz(¥)) N (L B 1).

Hence

(nL)* ™) = (L) A (L@ 1) 1d< > N(L®1) =1:(CL(p))-

If n is a prime, then similarly, by Theorem 7.17 and Lemma 7.18, we have
Yrmy+1(nL) C id<CZ(90)>~ By (5.15) we also have

Ya(n)+1 ("z) = 7h(n)+1("L) ®zZw],
so that

w41 (L) = M (RL)N (L ®1) C 1d< > N(L®1)=i(CL(p)).
O

Remarks. 7.20. Of course, there is also a corresponding combinatorial
consequence of Theorem 7.7: if a soluble Lie ring L of derived length d ad-
mits an automorphism ¢ of prime order p, then ¥4y (PL) C ia(CL()) for
some (d, p)-bounded number f(d,p). In particular, if d = 2, then y,41(pL) C
1a{CL(p))-

7.21. In Theorems 7.16 and 7.17 the commutators in the ambient linear
combinations can be chosen to be simple, with the same entry set and each
having an initial segment with zero mod n (or p) sum of the indices, by 5.6(b).

7.22. One can show that the sum Lg+ Ly 4 -+ 4 L,-; is “almost direct”:
iflo+hL +---+ 10—y =0, then nl; = 0 for each . We shall encounter a similar
situation in Chapter 13.

7.23. Suppose that a cyclic group {p) of finite order n acts as automor-
phisms on a Lie ring L (not necessarily faithfully). The same definition of the
“eigenspaces” L; for L = L ®z Z[w], where w is a primitive nth root of unity,
yields the same results: (L) (™) C ;4(CL(¢)). In other words, k(ny) < k(n)
for any n; dividing n (think of n, as the order of the automorphism of L
induced by ¢). For Higman’s function an analogous statement holds trivially.

§ 7.3. Regular automorphisms

Recall that an automorphism is regular if it has no non-trivial fixed points
(“non-trivial” means # 0 in a Lie ring, and # 1 in a group). In this sec-
tion we derive the theorems on Lie rings with regular automorphisms of finite
order and on nilpotent groups with regular automorphisms of prime order,
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although we shall need only the combinatorial facts from §7.2 in the study
of p-automorphisms of finite p-groups. Recall the fixed notation k(n) and i(p)
for Kreknin’s and Higman’s functions from §7.1. The following theorem was
proved by G. Higman [1957]; a new effective proof was given in [V. A. Kreknin,
1963] and [V.A. Kreknin and A.I Kostrikin, 1963].

Theorem 7.24. If a Lie ring L admits a regular automorphism ¢ of prime
order p, then L is nilpotent of class at most h(p).

Proof. By Corollary 7.19(b) (and by (5.23)), we have

PP u141(L) = Mo+ (PL) € 5alCL()) = 0.

So the additive group of yhg)+1(L) has finite exponent dividing p*®+!. An
automorphism of order p always has non-trivial fixed points on a non-trivial
abelian p-group (Corollary 2.8). Hence yy(p)41(L) = 0, as required. a

G. Higman [1957] also derived a consequence for locally nilpotent groups,
of which we reproduce the easier finite case.

Theorem 7.25. Suppose that G is a finite nilpotent group with a regular
automorphism @ of prime order p. Then the nilpotency class of G does not
ezceed h(p).

Proof. By Lemma 2.12, ¢ induces regular automorphisms on all factor-
groups 7i(G) /7i+1(G). Hence ¢ induces a regular automorphism of the associ-
ated Lie ring L(G). By Theorem 7.24, L(G) is nilpotent of class at most A(p).
By Theorem 6.9(a), the nilpotency class of G coincides with that of L(G). O

The following is a theorem of V. A. Kreknin [1963].

Theorem 7.26. If a Lie ring L admits a regular automorphism ¢ of finite
order n, then L is soluble of derived length at most 2k(n).

Proof. Note that if nL = L, then L*(™) C ;4(Cr(¢)) = 0 by Corol-
lary 7.19(a).
In general, by Corollary 7.19(a),

nzk(n) L(k(n)) — (nL)(k(n)) g id(CL(‘P)) =0.

So the additive group A of L*(™ has finite exponent dividing n?™_ Let
P1,- - - »Pm be the primes dividing n. Then A=A, @ --- ® A,,, where A, is
the Sylow p;-subgroup of A. Each A, is a ¢p-invariant ideal of L: if pfa = 0,
then p¢[a,b] = [pa,b] = [0,b] = 0 for any b € L and p{a® = (pia)? = 0.

For every p = p;, we have (¢) = (t,opk ) x (¢?) where n = pq with p { ¢.
We claim that the restriction of @?" is a regular automorphism of A,. Suppose
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that Cy4, (?*) # 0; then this is an additive p-subgroup which is ¢?-invariant
because ¢? commutes with ¢ (see Example 2.4). Since |¢?| = p*, there are
non-trivial fixed points of ¢7 on the abelian p-group CAP(tp”k) (Corollary 2.8)
and hence Cy,(p) = C4,(¥?) N Cy,(¥?) # 0, a contradiction. Thus, the ideal
A, admits a regular automorphism ¢?** of order dividing ¢. Since g4, = A,,
this ideal is soluble of derived length k(gq) < k(n), by the remark made at
the beginning of the proof. Thus, all ideals A,, are soluble of derived length
< k(n), and therefore their direct sum L*") = A4, @ ---@ A,,, is also soluble
of derived length < k(n) (see (5.24)). As a result,

[(2k(n)) — (L(k(ﬂ)))(k(n)) =0,

as required. g

Corollary 7.27. If, under the hypothesis of Theorem 7.26, the additive
group of L is torsion-free, then L is soluble of derived length at most k(n).

Proof. We saw above that the additive group of L*(") has finite exponent
dividing n?*™ and hence L*™) = 0. a

Remarks. 7.28. By a deep theorem of J. G. Thompson [1959], every finite
group admitting a regular automorphism of prime order is nilpotent.

7.29. It follows from the classification of the finite simple groups that
every finite group with a regular automorphism of finite order n is soluble.
It was also proved that such a group has a normal series with nilpotent fac-
tors of length bounded by the number of prime divisors of n, counting mul-
tiplicities (E. Shult, F. Gross, T. Berger; other generalizations are also due to
J.G. Thompson, E. C. Dade, H. Kurzweil, A. Turull, B. Hartley, M. Isaacs, and
others). Thus, the problem of studying such groups is, to a great extent,
reduced to the case of nilpotent groups.

7.830. It is an open problem whether the analogue of Kreknin’s The-
orem 7.26 holds for a (locally) nilpotent or (locally) finite group G with a
regular automorphism of finite order n: is it true that G is soluble of n-bounded
derived length? As noted in 7.29, for (locally) finite groups the problem is re-
duced to the case where G is a finite nilpotent group with a regular automor-
phism. However, an application of Kreknin’s Theorem 7.26 to the associated
Lie ring L(G) fails to produce a required result, since the derived length of
L(G) may be smaller than that of G. A positive answer is known only for
regular automorphisms of prime order (Higman’s Theorem 7.25) and for a reg-
ular automorphism of order 4 [L.G. Kovacs, 1961]. For torsion-free nilpotent
groups the analogue of Kreknin’s Theorem will be proved in Chapter 10.

7.81. Theorem 7.25 for finite nilpotent groups was an immediate conse-
quence of the Lie ring result. To extend Theorem 7.25 to arbitrary (locally)
nilpotent groups (not necessarily periodic) with a regular automorphism of
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prime order [G.Higman, 1957] requires some additional effort, since the in-
duced automorphism of the associated Lie ring may have non-trivial fixed
points. However, another “strongly central” series, of p-isolators of the terms
of the lower central series, reduces the proof to Theorem 7.24 on Lie rings
(Exercise 7.7).

7.82. Unlike Lie rings, one has to impose some additional conditions on
groups with regular automorphisms to obtain results like nilpotency or solubil-
ity. For example, the automorphism ¢ of the free group F' on free generators
z,y, defined by z¥ = y, y¥ = z, has order 2 and Cr(p) = 1.

7.33. We had to double the function k(n) in Theorem 7.26; is this really
necessary?

7.34. The following generalization of Higman’s Theorem was proved in
[E. L. Khukhro, 1990, 1993b]: if a Lie ring (algebra) admits an automorphism
of prime order p with exactly m fized points (with fired-point space of dimension
m), then there is a subring (subalgebra) of (p,m)-bounded index (codimension)
which is nilpotent of p-bounded class. No such generalization is known so far
for Kreknin’s Theorem, for automorphisms of composite order, apart from the
special case of order four [E.I. Khukhro and N. Yu. Makarenko, 1996a, 1997]).
The main results of this book are generalizations of the theorems on regular
automorphisms of Lie rings to the “modular” case of p-automorphisms of finite
p-groups.

7.85. There are simple Lie algebras with regular non-cyclic group of au-
tomorphisms of order 4. For example, let L be the Lie F,-algebra with basis
{e1, €2, €3} and structural constants [e), 2] = €3, [ez, €3] = €1, [e3,€1] = €.
Then the linear transformations given in this basis by the matrices

-1 00 1 0 O
0 -10], 0 -1 0
0 01 0 0 -1

generate an elementary abelian group A < Aut L of order 4 with C(A4) = 0.
By contrast, any finite group with a regular non-cyclic group of automor-
phisms of order 4 is soluble (G.Glauberman obtained a proof of this fact
without using the Feit-Thompson Theorem) and has nilpotent derived sub-
group [S.F.Bauman, 1966] of class bounded in terms of the derived length
[P. Shumyatsky, 1988].

Exercises 7

1. [V.A.Kreknin, 1963] Use induction on s to prove that, under the hypothesis
of Theorem 7.1, the following two inclusions hold:

(a) L&) C(Lopr,. - s Lna);
(b) L@*-D C (Lypy,... ,Lno).
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Thus, k(r) < 2*~!. [Hint: In the induction step, prove (a) first, using the
induction hypothesis for both (a) and (b); then prove (b) using (a) and the
induction hypothesis for (b).]

([D.J. Winter, 1968], [E.I. Khukhro and P.Shumyatsky, 1995]) Prove that
if L is a (Z/nZ)-graded Lie ring such that [L, Lo,... ,Lg] = 0, then L is

soluble of (m, n)-bounded derived length. [Hint: Using Theorem 5.25, it is
only necessary to prove that L # [L, L] for L # 0.] To obtain an explicit
bound for the derived length, use induction on s =1, 2,... ,n —1 to prove
simultaneously the following two statements:

(@) Lm0\ [ C (Lyyr, Loyas - -+ 5 Lo, Lo);
(b) LUm+D*~V) C (L 11, Loyay-- -, Lnoy, Lo).

As a result, L{m+)™"1-1) ¢ (Lo) = Lo, while yu11(Lo) = 0.
Suppose that L is a (Z/4Z)-graded Lie ring with Ly = 0. Prove that the

Lie subring (L, Ls) is a nilpotent ideal of class 3 with abelian factor-ring.

Let ¢ be a regular automorphism of order 4 of a Lie ring L. Prove that
v3(v2(L)) = 0. [Hint: Use 3 to show that y3(72(4L)) < 1a(CL(p)); for that
extend the ground ring of L by ¢ = v/—1.]

. Produce a regular automorphism of order 4 of the Lie algebra over Q with

basis {a, b} and structural constants [a,b] = a (which is not nilpotent).

[L.G. Kovécs, 1961] Let ¢ be a regular automorphism of order 4 of a finite
nilpotent group G. Prove that 43(72(G)) = 1. [Hint: Reduce the proof to
the case where G = [G,¢?] and 2 { |G|; then consider the associated Lie
ring of G and use 3.]

[G. Higman, 1957] Let G be an arbitrary nilpotent group (not necessarily
periodic) with a regular automorphism ¢ of prime order p. Show that G has
no elements of order p, and that ¢ acts regularly on the Lie ring constructed
as in Exercise 6.11. Deduce that the nilpotency class of G is at most A(p).

. Let p and ¢ be distinct primes. Suppose that G is a finite ¢g-group of

derived length 2 admitting a regular automorphism ¢ of order p™ such that
Co(¢?" ™) < [G,G]. Prove that G is nilpotent of (p,n)-bounded class.

Prove Remarks 7.14, 7.20, 7.22, 7.35.



Chapter 8

Almost regular automorphism of order p:
almost nilpotency of p-bounded class

Now we are in a position to prove the first of the main theorems on finite
p-groups with p-automorphisms having few fixed points. If such an automor-
phism is “almost regular”, with p™ fixed points, then the group is “almost
nilpotent”: it has a subgroup of (p,m)-bounded index and of nilpotency class
at most h(p), where % is Higman’s function. This bound for the nilpotency
class of a subgroup of (p,m)-bounded index is best possible, if required to
depend on the order of the automorphism only. The result of this chapter will
be used in Chapters 13 and 14.

Theorem 8.1. If a finite p-group P admits an automorphism ¢ of prime
order p with ezactly p™ fized points, then P has a characteristic subgroup
of (p, m)-bounded index which is nilpotent of class at most h(p), where h(p) is
the value of Higman’s function.

The proof relies on Higman’s Theorem from § 7.2 on regular automorphisms
of Lie rings in its combinatorial form and on the use of the associated Lie rings.
Note that, at a first glance, an application of Higman’s Theorem to L(P) and
the induced automorphism ¢ cannot give us much information, since not only
is ¢ not regular, but the number of fixed points of ¢ on L(P) can be much
greater than on P, by a factor equal to the nilpotency class, say. Another
important tool in the proof is a theorem of P. Hall from §4.2.

We shall freely use the facts that if M is a characteristic subgroup of N
and N is a characteristic (normal) subgroup of G, then M is a characteristic
(normal) subgroup of G, and that if M and N are characteristic (normal) sub-
groups, then [M, N] and M™ = (m™ | rn € M) are also characteristic (normal)
subgroups (see (1.14) and Lemma 1.8). The automorphisms of ¢-invariant sec-
tions induced by ¢ will be denoted by the same letter. The following lemma
makes use of the elementary material from Chapter 2; henceforth P and ¢
satisfy the hypothesis of Theorem 8.1.

Lemma 8.2. The rank of any @-invariant abelian section M/N of P is at
most pm.

Proof. We have |Cpyn(p)| < p™ by Lemma 2.12; hence the result follows
by Corollary 2.7. a

Proof of Theorem 8.1. Consider the associated Lie ring L(P). Then ¢
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induces the automorphism of L(P), which we denote by the same letter. We
have |Cy,(p)/vipa(P)(®)| < p™ for all i by Lemma 2.12, whence in additive
notation p™Cly(p)/yy.(P)(¢) = 0 by Lagrange’s Theorem. By the definition
of the action of ¢ on L(P), we have Crp)(¢) = @;Cryi(P)/visr(P)(®)- Hence
p™Crp)(¢) = 0, which implies (by (5.5)) that

" 1a(Crm (9)) = 1a(p"Crimy(#)) = 0. (83)
We fix the notation h = A(p) for the value of Higman’s function for the
rest of the proof. Applying Corollary 7.19(b), we obtain yu41(pL(P)) <
id<CL(p)((p)>. The left-hand side is equal to p*+'y,.1(L(P)) by (5.23), and
the right-hand side is annihilated by p™ by (8.3). Hence
PR (L(P)) = 0. (8.9
Since yh+1(L(P)) = Bisnt1(7i(P)/¥i+1(P)) (Lemma 6.7), equality (8.4) can be
rewritten in terms of the group P as (y;(P) /i1 (P))?"*™* = 1foralli > h+1.
For every i, the rank of v;(P)/~:i4+1(P) is at most pm by Lemma 8.2. Together,
the bounds for the exponent and the rank of a finite abelian group yield a
bound for the order: |y(P)/vis1(P)| < pP™+m+) for all ¢ > h+ 1. If
Q is any ¢-invariant subgroup of P, the same kind of a hypothesis holds:
|Co(¢)| < p™. Thus, we have proved the following lemma.

Lemma 8.5. If Q is a @-invariant subgroup of P, then
(a) (7 (Q)/7h+2(Q))ph+m+1 -1
(b) |'7h+1 (Q)/7h+2(Q)| < ppm(h+m+1). .

The idea is to collide the inequality of Lemma 8.5(b) with an opposite
one given by Theorem 4.10. If we put H = Y himy1)41(P), then, by The-
orem 4.10, |y(H)/7iq (H)| > pPmttm+)+1 for all ¢, unless y;41(H) = 1. On
the other hand, |yhs1(H)/yhe2(H)| < pPm(+m+1) by Lemma 8.5(b). We see
that the only way to avoid a contradiction, is to admit that y,42(H) = 1.

O Og OO
\ / \ /

Y1 (H) [ yng2(H)| > prrlitm+)+1 > <|’7’h+1(H)/7h+2(H)| < pprlhtmtl)

NIQIOIOIOMENQOYOIONO

’7’h+2(H) =1
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As a result, we have proved that 442(Ypm(h+m+1)+1(P)) = 1. This already
gives an upper bound for the derived length of P in terms of p and m; more
precisely, P is an extension of a nilpotent group of class < 2+ 1 by a nilpotent
group of class < pm(h+ m + 1).

We can, however, choose a subgroup in a better way. The semidirect prod-
uct P(p) also admits ¢ as the inner automorphism with exactly p™*! fixed
points. (Indeed, Cp(,)(¢) = Cp(¢){¢).) Therefore, if we replace m by m + 1
in the above formulae and put Hi = Yp(m41)(htm+2)41(P{p)), then the same
conflict of inequalities yields the same kind of result: y442(H;) = 1, that is,
H; is nilpotent of class at most A + 1.

The advantage here lies in the fact that ¢ acts, of course, trivially on the
factors of the lower central series of the group P{y) which ¢ belongs to. By
Lemma 2.12, the orders of these factors are at most p™+!, since |Cp(,)(¢)| =
p™t1. Moreover, all of these factors, excepting the first one, are, in fact, ¢-
invariant sections of P. Hence all of them, with a possible exception of the first
one, have orders at most p™; and for the first factor, of order at most p™+?!,
we have |P(¢) : 72(P(¢))| = p|P : 72(P ()| since y2(P(¢p)) < P. Therefore,
the index of H; in P is at most

(pm)p(m+1)(h+m+2) — pmp(m+1)(h+m+2).

Thus, H, is the subgroup of P of (p,m)-bounded index which is nilpotent of
class at most h(p) + 1.

We have yet to improve the bound for the nilpotency class down to A(p).
Since H; is nilpotent of class h + 1, we have 'yh+1(H1)”h+m+1 = 1 by Lemma
8.5(a), and, by Lemma 6.13,

t ¢ (h+1)t
[azl’ PR ’afb-}-l] = [ala v aah+1]p

for any a; € Hy, t € N. So, if we put r = [(h+m + 1)/(h + 1)] + 1 (brackets
denote the integral part), which is a (p, m)-bounded number, then
(@8, ahya] € yp (Ha )™ =1

for any a; € H;. We claim that the subgroup H, = H? [Hy, Hi] is nilpotent
of class at most h(p). By Theorem 3.12, it is sufficient to verify the nilpotency
law on the generators. Since H; is generated by the generators of H? and
[H1, Hy)], it is sufficient to check that [by,...,by41] = 1, where every b; is of
the form either a?" or [c,d], a,c,d € H;. If there is at least one commutator
among the b;, then [by,... ,bpy1] € Yry2(H1) = 1 (by Lemma 3.6), and if all
of the b, are p"th powers, the result was established above.

The index of H; in H; is at most pP™", since H;/H, is an abelian group of
exponent dividing p" and of rank at most pm (Lemma 8.2); the index of H,



98 8. Almost regular automorphism of order p

in P is also (p,m)-bounded. Thus, H, is a subgroup of (p, m)-bounded index
in P which is nilpotent of class at most A(p). To produce a characteristic
subgroup, we simply take PP’ < H,, for some (p,m)-bounded f (say, p/ =
|P : Hj|). Since the number of generators, the exponent and the nilpotency
class of P/ P are (p,m)-bounded, the order of P/P”f is (p, m)-bounded as well
(Lemma 6.12(c)). Thus, PP’ is the required characteristic subgroup of (p,m)-
bounded index which is nilpotent of class < h(p). a

Every element of a group acts by conjugation as an inner automorphism;
hence we immediately obtain the following corollary.

Corollary 8.6. Suppose that p™ is the minimal order of a centralizer of
an element of order p in a finite p-group P. Then P has a subgroup of (p,m)-
bounded index which is nilpotent of class at most h(p). a

Remarks. 8.7. The construction of H in the proof Theorem 8.1, which
gives a “weak” bound, in terms of p and m, for the derived length of P, is due
to J. Alperin [1962]. The construction of H; is due to E.I. Khukhro [1985], and
the last step, from H, to H,, was made by N. Yu. Makarenko [1992].

8.8. One can show by means of examples that the bound A(p) for the
nilpotency class in the conclusion of Theorem 8.1 is best possible (if we require
that the bound depends on p only and assume that h(p) is the best possible
Higman’s function as in § 7.1). It is not clear how realistic is the bounds for the
index that could be extracted from the proof. (Of course, all bounds obtained
involve Higman’s function A(p), good estimates of which are yet to be found,
but one can seek the bounds in terms of A(p).)

8.9. In the particular case of m = 1, that is, |Cp(¢)| = p = |¢|, C. R. Leed-
ham-Green and S.McKay [1976] and R.Shepherd [1971] proved that P has a
subgroup of p-bounded index which is nilpotent of class < 2. We shall prove
this result in Chapter 13. The study of p-groups of maximal class amounts to
this situation: N.Blackburn [1958] proved that every p-group P of maximal
class contains a subgroup P; of index p and an element a with |Cp,(a)| = p;
the inner automorphism induced by a has order p, since the pth power of a
must be in the centre of P.

8.10. The results on p-groups of maximal class enabled me to conjecture
that there exists a function f(m) such that every finite p-group admitting an
automorphism of order p with exactly p™ fixed points has a subgroup of (p, m)-
bounded index which is nilpotent of class at most f(m). The result cited in
8.9 means that we can indeed take f(1) = 2. This conjecture was recently
confirmed by Yu. Medvedev [1994b], whose theorem is proved in Chapter 14.

8.11. It is worth mentioning that there is no universal constant c (indepen-
dent of p and m) such that every finite p-group P admitting an automorphism
of order p with p™ fixed points has a subgroup of (p, m)-bounded index which
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is nilpotent of class c, even for P soluble of derived length 2 (Exercise 8.3).

8.12. The result of this chapter is the “modular case” of the following
general theorem: if a nilpotent group admits an automorphism of prime or-
der p with a finite number m of fired points, then there is a subgroup of (p,m)-
bounded indez which is nilpotent of p-bounded class. The “coprime component”
of this theorem is much more difficult. In [E.I. Khukhro, 1990] this theorem
was proved for periodic nilpotent groups, on the basis of a rather intricate
connection with the analogous theorem on Lie rings (see Remark 7.34). Then
Yu. Medvedev [1994c] extended the result to arbitrary nilpotent groups, es-
sentially by reduction (although by no means trivial) to the case of periodic
groups. (See also the book [E.I. Khukhro, 1993b].) For p = 2 the result was
proved earlier in [B. Hartley and T. Meixner, 1980].

8.13. The enormous advantage of the “modular case”, where a p-auto-
morphism acts on a p-group, is the bound for the rank (dimension). This is
especially true for Lie rings: suppose that ¢ is an automorphism of order p” of
a Lie ring L whose additive group is a p-group, and let p™ be the number of
fixed points of ¢. Corollary 7.19(a) immediately implies that pmtn2 LB = 0,
where k = k(p™). Then pim/2"#%+1 [ is a soluble ideal of derived length < k(p™)
which has (p,m,n)-bounded index in the additive group of L, since the rank
of the latter is at most mp™.

If in this situation |¢| = p, then p™t*+ly, (L) = 0, where h = A(p), by
Corollary 7.19(b). Then pt™/(*+1)+2[, is a nilpotent ideal of class < k(p) which
has (p,m)-bounded index in the additive group of L. If L is in addition soluble
of derived length d, then Remark 7.20 yields a subring p/(4»™ L of possibly
smaller index which is nilpotent of possibly smaller, (p, d)-bounded class; in
particular, if L is soluble of derived length 2, then pl™/(®+\I+2[, is a nilpotent
ideal of class < p.

Exercises 8

1. Compute an explicit upper bound (in terms of A(p)) for the index of the
subgroup in the conclusion of Theorem 8.1.

2. Use Remarks 7.14 and 7.20 to prove that if a group P satisfying the hypoth-
esis of Theorem 8.1 is soluble of derived length d, then P has a subgroup
of (p,m)-bounded index which is nilpotent of class < (p? — 1)/(p — 1).
Compute the explicit upper bound for the index of the subgroup.

3. [E.I. Khukhro, 1985] Let p be a prime and let w be a primitive pth root
of unity. For a positive integer s put K, = Z[w]/p’Z[w] and consider the
free K,-module U on free generators u,...,uy—1. Every element u =
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PV kiu; € U can be viewed as a vector (k... ,k,—1), k; € K,. The
group of matrices

1 a ... Gp—2

A= . . ’ a; € K:
@
0 1
is commutative and acts on the vectors from U by right multiplication as
a group of automorphisms of the additive group of U. Let P = U X A be
the semidirect product of U and A. The matrix ¢ = diag(w,w?,... ,w?P™?)
also acts on U by right multiplication and on A by conjugation. Hence ¢
can be regarded as an automorphism of P = U X\ A. Show that

ICr(e)] = ICu(@)l - ICalp)| = p"~" - pP7% = p™7°.

Prove that the minimum of the indices of the subgroups of P that are
nilpotent of class p— 1 increases unboundedly with the growth of s. Thus,
there is no constant ¢ (independent of p and m) such that every finite p-
group admitting an automorphism of order p with p™ fixed points has a
subgroup of (p, m)-bounded index which is nilpotent of class c.



Chapter 9

The Baker-Hausdorff Formula
and nilpotent Q-powered groups

We construct both free nilpotent groups and free nilpotent Lie Q-algebras
within associative Q-algebras. The Baker-Hausdorff Formula is proved to be
a Lie polynomial which links the operations in the group and the Lie algebra.
The construction is used to embed any torsion-free nilpotent group in its Q-
powered “hull”. In Chapter 10, all this will be applied to establish the Mal’cev
Correspondence between nilpotent Q-powered groups and nilpotent Lie Q-
algebras and the Lazard Correspondence for nilpotent p-groups and Lie rings
of class < p—1.

§ 9.1. Free nilpotent groups

In § 5.3 we used a free associative Q-algebra A to construct a free Lie ring £
as a subring of A(~). We use new “calligraphic” letters for these objects, since
here we prefer to denote by A = A/ A°*! and L = L/v.41(L) the free nilpotent
factor-algebras. In this section, we construct a free nilpotent group F within A
with adjoined outer unity; A is the common ground for both L and F', which
helps to establish connections between them.

We recall some definitions and basic properties. Let A be a free nilpotent
associative Q-algebra of nilpotency class ¢ with free (non-commuting) genera-
tors z1, £2,... (when necessary, we shall take a well-ordered set of generators
of any given cardinality); “nilpotent of class ¢” means that every product of any
¢+ 1 elements is 0. Thus, A has a basis consisting of all monomials z;, - - - z;,
of degrees k < ¢ (no parentheses are needed because of the associative law).
The multiplication of monomials is juxtaposition:

(zi "'zik) '(‘7’1'1 "'zjz) = Tiy T Ty Ty,

where no cancellations are allowed, but all monomials of degree > c+ 1 are
equal to 0. It is clear that A is homogeneous: A= A; & --- & A., where A; is
the homogeneous component of A of degree .

In fact, A is the factor-algebra of a free associative Q-algebra A by the
ideal A*! = @;5.,1 Ai. The bracket multiplication [z,y] = zy — yz defines
the structure of the Lie Q-algebra A() on the additive group of A. We denote
by L the Lie ring (Z-algebra) generated by the z; in A(?). Then QL = {r! |
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r € Q, | € L} is the Lie Q-algebra generated by the z;. By Theorem 5.39, the
Lie subring £ of A(-) generated by the free generators of A is a free Lie ring
(and QL is a free Lie Q-algebra). Since £ is a homogeneous subspace of A,
it follows that L = L/y.41(L) = £/(L N A1) is a free nilpotent Lie ring of
class ¢ with free generators z; (and QL is a free nilpotent Q-algebra). Both L
and QL are homogeneous with components Ly = LN Ay and QL = QLN Ay,
and even multihomogeneous with respect to the free generators z;.

Adjoining an outer unity 1 to A we form the associative Q-algebra Ao @ A,
where A is the one-dimensional subspace spanned by 1. We are going to
construct a free nilpotent group within the set 1 + A = {1+ a | a € A}
In fact, 1 + A is a group with respect to the associative multiplication: 1 is
the neutral element, and 1 — a + a®? — a® + - - - + (—1)°a® (which also belongs
to 1+ A) is the inverse of 1 + a. We need, however, a subgroup G of 1 + A,
generated by the elements 1 + z; + y:, where the y; are some fixed elements
from A, @ --- @ A, that is, each y; is a linear combination of monomials of
degrees > 2. We shall specify the y; later; the proof of the fact that G is a free
nilpotent group with free generators 1 + z; + y; does not depend on the choice
of the y;. (In fact, for some purposes, it is simplest to take the 1 + z; as the
generators of G, but we shall choose another set for some other reasons.)

We denote by A™ the sum A, & - -- @ A., so that the elements of A™ are
linear combinations of monomials of degrees > n. We use brackets to denote
both Lie products in L and group commutators in G; the meaning will always
be clear from the context.

Lemma 9.1. (a) Suppose that » is a commutator of weight k. Then the
group commutator (1 + z; + yi), the value of 3 on the elements 1 + z; + y;
in G, is equal to 1+ »(xz;) + ), where A € A¥t! and s(z;) is the corresponding
Lie ring commutator, the value of s on the z; in L.

(b) Suppose that g = [l; »;’ (modve11(G)), a; € Z, where the x; =
s;(1 + z; + yi) are group commutators of weight k in the 1 + z; + y;. Then
g =1+ 3; ajn;(z:) + A, where X € A¥*! and the »;(z:) are the corresponding
Lie ring commutators in the z;.

Proof. (a) Induction on the weight of s. If the weight is 1, the group
commutator is one of the 1+ z;+y;; then z; is the same commutator in L while
y; € A?, as required. If the weight k of s is greater than 1, then s = [0, 5r9],
where s; has weight k; with k; + k; = k. By the induction hypothesis, we
have s;(1 + 2; + ;) = 1 + s;(2;) + );, where X; € A%+ j =1, 2. Then

(L 2+ i)t = 1= (e(2i) + A7) + (i) + X)7 — -+ = 1= sg5(@a) +

where p; € A%t 5 =1, 2
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Now we can compute
%(1 +z; + y;)
= [Pa(l+zi+y:), (Ll + zi + )]

= (L4 2+ y:) sl + 2+ v) sl + 2+ w) sl + 2+ v:)

(1= (2) + ) (1 = sea(zs) + p2)(1+ sa () + M)(L+ sea(zi) + A2)

L+ seq(zi)2ea(zi) — sea(i) 2 (z) + A

On the right, the sum of all products of two Lie ring kappas is precisely the
Lie ring commutator [s(z;), s¢2(z;)]. All other products of two, three or four
elements s,(z;), Ai, pu involving different indices 1, 2 are in ARtk +l = Ak+1
and their linear combination is denoted by A. The linear combination of the
products of one or two elements »;(z;), A;, p; with the same index j equals 0
since it is the same as in the product (1 — s;(z:) + p;)(1 + s;(z;) + X)) = L.

(b) We have
g=1I»" 117"
7 3

where 7, are group commutators of weights > k + 1 in the 1 + z; + y;, and
Bs € Z. By (a), »; = 1+ s;(2;) + Aj for some \; € A¥! and 7, = 1 + v,
for some v, € A*'. Then also ;' = 1 — »;(z;) + X, for some X, € A*+1,
and 77! = 1 + v/ for some v, € A*¥*!. Substituting these expressions in the
above product and collecting all terms of degree < k we get 14+ Y; a;5(x:),

as required. |

Now it is obvious that every commutator of weight ¢+ 1 in the generators
1 + z; + y; is equal to 1, which means that the group G is nilpotent of class e.
Moreover, G is a free nilpotent group of class c.

Theorem 9.2. The group G is free nilpotent of class ¢ with free genera-
tors 1 + z; 4+ y;.

Proof. Let U be a free nilpotent group of class ¢ with free generators u;
(with ¢ in the same index set as for the elements 14-z;+y;). Then the mapping
u; — 1+ z; + y; extends to a homomorphism @ of U/ onto G. We claim that
¥ is an isomorphism. Suppose the opposite, and let u be a non-trivial element
in Kerd; choose k < ¢ such that u € 4x(U) \ y441(U). Then

u= H #;? # 1 (mod yx41(U)), (9-3)

where the »; are some commutators of weight k in the u;, and o; € Z. By
Lemma 6.7(a), in the associated Lie ring L(U) we have ¥; aj;(i;) # 0,
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where s;(@;) are the same Lie ring commutators in the #;, the images of
the u; in U/42(U). Since L is a free nilpotent Lie ring of class ¢ > k with
free generators z;, this implies that ¥_; a;s;(z;) # 0 in L (because of the
homomorphism of L onto L(U) extending the mapping z; — ;).

Applying 9 to (9.3), we obtain J(u) = [I; 9(3;)* (mod~x41(G)), where
¥(s;) are the same group commutators s; in the 1+z;+y;. By Lemma 9.1(b),
d(uw) = 1+ T, ajj(z:) + A, where X € A**! and s;(z;) are the same Lie ring
commutators in the z;. Since J_; aj3j(zi) # 0 and A is homogeneous, it follows
that 9(u) # 1, a contradiction. a

Remarks. 9.4. It can be shown that L is naturally isomorphic to the
associated Lie ring L(G), the isomorphism being induced by the mapping
z; = (1 + 2i + y:)72(G).

9.5. Let A be a free associative algebra freely generated by the &;. Let
A be the algebra of formal power series in the £;, the Cartesian sum of the
homogeneous components A;. Then the elements 1 + £; freely generate an
(absolutely) free group F. An analogue of Lemma 9.1 holds for A too, which
is a way to prove that (2, v:(F) = 1 and L(F) = L.

§ 9.2. The Baker—-Hausdorff Formula

In this section, we choose a special set of generators of a free nilpotent
group. For any @ € A, we define the formal exponent

. a a’ at

€ =1+ﬁ+-2—!-+--'+g,
which is, of course, an element of 1 + A. In particular, the elements ¢* have
the form 1+ z; +y; with y; € A%2. By Theorem 9.2, the ¢ freely generate a free
nilpotent group F' of class ¢. In fact, all elements in 1 + A can be represented
in the form e*, a € A. For any a € A, we define the formal logarithm

a®? a® eq @°
log(1+a)—a—-§-+-§-—---+(—1) =

Although A is not a commutative ring, the powers of the same element clearly
commute, which makes it easy to prove by a direct calculation, just as for
“real” exponents and logarithms, that log(e®) = a and €°6(1+¢) = 1 4 q for
any a € A. One of the reasons for representing elements of the group F' in
the form €%, a € A, is the fact that it is extremely easy to take powers of such
elements: (e®)¥ = e** for any k € Z. (This is, again, easy to prove by a direct
calculation, since the powers of a commute.)
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Definition 9.6. The Baker-Hausdorff Formula is H(z,,z;) = log(e® )
regarded as a polynomial in two non-commuting variables; equivalently, this
is a polynomial H(z;,z;) such that

efHlEne) = o122 (9.7)

(Actually, it is the theorem below stating that H(z;,z;) € QL that is usually
referred to as the Baker-Hausdorff Formula.) The homogeneous component
of H(zy,z,) of degree n is denoted by H.(z1,z;) € An, so that H(zy,z;) =
=1 Ha(z1,22).

Direct calculations can give some of the first terms of H(z,,z,). For ex-
ample, Hy(z1,z2) = 71 + 72 and Hy(z1,22) = j71zs — Jzomy = Lz, 24).
By Lemma 9.1(a), [e*1,€%2] = 1 + [z1,22) + -+ = el®1+ where the dots

denote summands of degrees > 3.

We need to make the following remark on the connections between free
nilpotent algebras of different nilpotency classes. It is clear that A, is an ideal
of Ay ® A, and the images of A, L, QL, and F in (Ao & A)/A. are natu-
rally isomorphic to the corresponding objects constructed for the nilpotency
class ¢ — 1. Hence the components Hy(z),z;) of degrees k < c — 1 coincide
with the components of the Baker-Hausdorff Formula defined in the same way
for the free nilpotent algebra of class ¢ — 1. Thus, with some abuse of nota-
tion, the Baker-Hausdorff Formula is the same for all nilpotency classes. (It
may be more natural to define H(z1, z2) as an infinite formal power series in
the context of Remark 9.5, but we prefer to deal with finite polynomials in
nilpotent algebras instead.)

Another remark makes use of the fact that A is a free nilpotent algebra.
Let B be an arbitrary nilpotent associative Q-algebra of class < ¢. For any
b € B, the exponents ¢ can be defined in the same way in By @ B, where B; is
spanned by the outer unity. Then (9.7) implies that the same Baker-Hausdorff
Formula holds for them:

ellbubz) — ghighe (9.8)

for any b;,b; € B: simply apply to (9.7) the homomorphism of Ay @ A onto
By & B extending the mapping z; — b;, 1 — 1.

Since we aim at proving that H(z,,z;) € QL, we shall need a criterion for
an element in A to belong to QL. Recall that in §5.3 the Dynkin operator
was defined on associative monomials as bracketing from the left:

5(‘7:"1‘7:"2 e zim) = ["'[zﬁaziz]’ s azim]

(where 6(z;) = z;); then § is extended to A by linearity.
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Lemma 9.9. A homogeneous element a € A of degree k belongs to QL if
and only if 6(a) = ka.

Proof. Tt follows from the definition that é(a) € QL for any a € A; hence
if 6(a) = ka, then a = }6(a) € QL.

Since the elements of QL are linear combinations of simple commutators in
the z; (Lemma 5.6), to prove the converse we need only to show that §(a) = ka
for any simple commutator a = [z;,,... ,z;,] of weight k in the z;. If k = 1, the
assertion is obvious. For k > 1 we use the induction hypothesis and the equality
8(zi[ziyy -, Zie,)) = [y [%415- -+, Tiy_,]], Which holds by Corollary 5.42:

6([‘7:"1) s azik]) = 5([‘7:"1) s 7‘7:"1:_1]‘7:"1: - zl’k[ziﬂ R ’z'.k—l])

[5([‘7:"1’ s azikq]))zik] - 6($ik[zi1a v ’z"k—l])

(k - ]-)[[ziu' . azik—1]azik] - [zik’ [ziu v ’z"k—l]]

= k[.’l:,'l,. .. ,.’E,'k_l,:l:,'k].
O

For any u € A, we denote by ad(u) the operator of Lie ring multiplication
by wu, that is, aad(u) = [a,u] for ¢ € A. The operator ad(u) is an element
of the associative Q-algebra Hom A of all Q-linear transformations of A. If
f = f(z;) is an arbitrary element of A regarded as a linear combination of
associative monomials in the z;, we can form f(ad(z;)) € Hom A by replacing
the z; by ad(z;). Note that we have af(ad(z;)) = §(af(z;)) by the definition
of the Dynkin operator.

For any u € A, we denote by 1(u) € Hom A the operator of left multipli-
cation by u in A, that is, al(u) = ua for a € A; similarly, r(u) € Hom A is
the right multiplication by u. It is clear that ad(w) = r(u) — 1(») in Hom A.
Let B denote the subalgebra of Hom A generated by the ad(u), 1(u), r(w) for
all u € A. Applying any of the 1(u), r(u), ad(u) to an element from A* pro-
duces an element in A*t!. Since A°t! = 0, it follows that the subalgebra B is
nilpotent of class ¢ — 1. Therefore, the same Baker-Hausdorff Formula (9.8),
eH(b1b2) = ebieb holds for any by, by € B, where €’ is defined for b € B with 1
being the identity mapping of A.

It is clear that 1(u)r(v) = r(v)l(u) for any u,o € A. Hence ¥ =
er@-1w) = (e and lWer = el for any u,v € A. It is obvi-
ous that r(a)r(b) = r(ab) and 1(a)l(b) = 1(ba) for any a,b € A. It follows that
H(r(a), (b)) = r(H(a,b)), while H(1(b),1(a)) = 1(H(a,b)). These remarks
enable us to prove the following crucial lemma. To lighten notation, we set
z = z1, y = z, for the rest of the section.
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Lemma 9.10. H(ad(z),ad(y)) = ad(H(=z,y)).
Proof. We have

H(@d(2),8d(y)) _  ad(z)ad(y) — r(=)-1(=) r(v)-1v)

= @@ W)Uy = (@) () g1} —1(v)

= HUEW) (MW 2))-1 = Hx@),rw) o~ H(),1(=))
= HEY) ~WH(z9) = ad(H(z,9))
Taking logarithms of both sides of the equation eH(2d(z):2d(¥)) = cad(H(z,y))
obtained, we get H(ad(z),ad(y)) = ad(H(z,y)). a

Now we prove the following fact often referred to as the “Baker-Hausdorff
Formula”.

Theorem 9.11. H(z,y) € QL.

Proof. Given the nilpotency class c of A, we shall prove that H,(z,y) € QL
for all degrees n < ¢—1. Since cis arbitrary, this will imply that H,(z,y) € QL
for all n, in view of the remark above on the uniqueness of H(z,y).

We consider the image of z = z; under both parts of the equation of
Lemma 9.10 (the reader will distinguish the right operator notation and prod-
ucts in A):

zH(ad(z),ad(y)) = zad(H(e,y)) = [z, H(z,y)] = zH(z,y) — H(=,y)=.

Then
zHn(ad(z),2d(y)) = 2Hu(2,y) — Ha(z,y)2 (9.12)

for each n < ¢ — 1, since A is homogeneous. Both parts of (9.12) are homo-
geneous elements of A of degree n + 1; we apply the Dynkin operator to them:

(n + 1)zH,(ad(2), ad(y))
= 8(zHn(ad(2), ad(y)))
8(zHn(2,y)) — [6(Hn(z,y)), 2]
= zHa(ad(z),2d(y)) — 6(Ha(z,y)) 2z + 2 6(Ha(z,y)).

We applied Lemma 9.9 to the left-hand side of (9.12), which is in QL, and
used the fact that §(zH,(z,y)) = zH,(ad(z),ad(y)). As a result, we have

nzH,(ad(z),ad(y)) = —6(Ha(z,y)) 2 + 2 6(Ha(2, ),
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or, applying (9.12) to the left-hand side,

nzH,(z,y) — nHa(z,y)z = —6(Hy(z,y)) 2z + 2 6(Hu(z, y)). (9.13)

Since the associative monomials are linearly independent, we must have the
equality for those parts of (9.13) which involve only the monomials beginning
with z. This gives us

nzH,(z,y) = 2 6(Ha(z,y)),

whence, for the same reason, nH,(z,y) = 6(H,(z,y)). So, by Lemma 9.9,
H.(z,y) € QL for all n < c—1. Varying the nilpotency class c of A, we obtain
that H,(z,y) € QL for all n. a

Corollary 9.14. The subset e?F = {e* | u € QL} is a nilpotent group of
class c.

Proof. This is, indeed, a subgroup of 1+ A: for any u,v € QL we have, ob-
viously, e™* € e, and e*e’ = eH(*¥) ¢ ¢ by the Baker-Hausdorff Formula
since H(u,v) € QL as the image of H(z,,z;) € QL under the endomorphism

of QL extending the mapping ; — u, 2 — v. To provethat [e*,...  e*t1] =
1 for any u; € QL, consider the endomorphism 9 of Ay ® A extending the map-
ping 1 — 1, z; — u;. We have [e“1,...  e%41] = [¢™1,... ,e%41]? = 1. a

Since e* € €%, we obtain that F is a subgroup of ¢?: if ¢* € F, then
u € QL. But not every element in ¢@C belongs to F, for example, e*1/2 ¢ F.

We record here a technical lemma on the structure of the first terms
of H(z,y).

Lemma 9.15. (a) H(z,y) = z+y+ ¥, tjx;, wheret; € Q and the x; are
Lie ring commutators in x and y of weight > 2;

(b) [e%,e¥] = K@Y where K(z,y) = [z,y] + ¥; u;j3;, where u; € Q and
the s; are Lie ring commutators in x and y of weight > 3.

Proof. (a) It is clear that "¢ = 1+ z + y+ A with A € A% Then
H(z,y)=log(l+z+y+X)=(z+y+X)—(z+y+A)?+---=z+y+ X
with X' € A2, Since H(z,y) € QL, we also have )’ € QL N A? which implies
the result.

(b) By Lemma 9.1(a), [¢%, €¥] = 1+ [z, y] + p with p € A% Then K(z,y) =
log(1l + [z,y] + p) = [z,y] + ' with p' € A3. Since K(z,y) € QL, we have
p' € QLN A3 and the result follows. a

Applying the definitions, one can compute directly the explicit form of
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H(z,y) as a linear combination of associative monomials:

YT

T
H(z,y) = log(e"e") = log[1+ ¥ L
r,-,a.eNugo) Ti:8;
i+ 3>

E E (_1)m—1 .'Erly"l o zrmysm
B N sy ™M sl rplsy !
Ti+s;>0
Since H(z,y) € QL by Theorem 9.11, we can apply the Dynkin operator §
to the homogeneous components H,(z, y), to obtain an explicit expression for

H(z,y) as a linear combination of commutators in z,y. To wit, H,(z,y) =
L6(Hn(z,y)) by Lemma 9.9, so that

H(z,y)
/—L /—ilh /—imh
=E E (=1)m-? A T S (9.16)
N iy M i (ri + si) mlsi! o rlsy! ) )

rita;>0
Here, in A, the sums are taken over all monomials of degrees < ¢.

Remark 9.17. The commutators on the right of (9.16) may well be lin-
early dependent, but this explicit formula already gives important information
about H(z,y). For example, note that no prime divisors of the denominators
exceed ¢, the nilpotency class of A.

§ 9.3. Nilpotent Q-powered groups

By Corollary 9.14, €% is a nilpotent group of class ¢. Moreover, e is a
Q-powered group, that is, torsion-free and divisible: (e*)* = e** =1 = u =0
= e* = 1 and (e**)* = ¢¥, for any ¢* € ¢? and k € N. Recall that Q-powered
groups can be regarded as algebraic systems that are groups with additional
unary operations of taking powers in QQ, see Example 1.40. We shall prove that
the set of all roots of the elements of F' = (¢**) is a free nilpotent Q-powered
group (and coincides with e?X). This will enable us to embed every torsion-free
nilpotent group in its Q-powered hull (often called its Mal’cev completion).

For a subgroup H of a nilpotent group G, we denote the set of all roots
of all elements from H by vVH = {g € G | g € H for some n = n(g) € N}.

Note that, obviously, /vH = vH.

Theorem 9.18. If H is a subgroup of a nilpotent group G, then VH is a
subgroup. If A < B for some subgroups A, B < G, then VA < V/B.
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Proof. In proving that v/H is a subgroup, we may clearly assume that
G = <\/ﬁ >; note that this condition is inherited by every factor-group of G

with respect to the image of H. Then we need to prove that G = /H.
Induction on the nilpotency class ¢ of G. For G abelian, the result is obvious:
if a¥ € H, then, for example, (a;--an)"*» € H. Now let ¢ > 1. By 3.6
and 6.13, 7.(G) is generated by the commutators [g1,... ,g.] of weight ¢ in
the generators g; € VH. For each g; there is n; such that g € H. Using
Lemma 6.13, we get

H>3 g1, ..., 9% =0, ,9J" 7.

Thus, v.(G) is generated by the roots of elements from HNy.(G), and therefore,
as an abelian group, 7.(G) is contained in v/H, as shown above. By the
induction hypothesis applied to G/v.(G), for every g € G thereisn = n(g) € N
such that ¢" € Hv.(G), that is, g" = hz for some h € H and z € 7.(G). But
2™ € H for some m € N, as shown above. Then ¢"™ = (hz)™ = h™z™ € H,
since h and z commute, so that g € VH, as required.

Now let A < B; we need to show that [a,] € v/A for any a € VA and
b € V/B. We use reverse induction on the weight of a commutator » = s(a, b)
in a and b to show that »(a,b) € VA. Let a* € A and b* € B. If the weight
of s is ¢, with weight ¢, in @ and ¢; in b, then »(a*,bt) = 3(a,b)*"** by
Lemma 6.13. Since A < B, the left-hand side is in A; hence x(a,b) € VA4,
as required. Now for s of any weight k < ¢, of weight k; in a and k; in b,
we have, by Lemma 6.13, »(a’,b!) = s(a,b)* ), where X is a product of
commutators in a*! and b*! of weight > k + 1. Again, the left-hand side is
in A. By the induction hypothesis and since v/A is a subgroup, A € VA, which
implies »(a, b))t € /A, whence x(a,b) € V/A. Finally, we shall arrive at
[a,b] € VA. a

Recall that a Q-powered subgroup of a Q-powered group is a subgroup
closed under taking all roots (powers in Q). Saying that a Q-powered (sub-)
group is generated by a set, we shall always mean generation as a Q-powered
(sub)group. To avoid confusion, we shall speak of “abstract” (sub)groups (gen-
erated by a set), meaning just subgroups, regardless of additional operations.

Corollary 9.19. (a) Suppose that G is a Q-powered group and H is an
abstract subgroup of G. Then VH is a Q-powered subgroup generated by H.

(b) If G is a Q-powered group generated by a set M, then G = VK, where
K is an abstract subgroup generated by M.

Proof. (a) By Theorem 9.18, the set v/H is an abstract subgroup. It
remains to note that, obviously, all roots of elements of v/H are in VvH.

(b) By (a), VK is a Q-powered subgroup generated by K and hence by M;
hence VK = G. a
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We return to our main construction. Since F' is a subgroup of the Q-power-
ed group ¢?, we can form /F, which here takes the form vF = {e™ | e* €
F, r € Q}. By Corollary 9.19, v/F is a Q-powered group generated by the
e® and +/F is nilpotent of class ¢, since so is €2 by Corollary 9.14. (In fact,
VF = ¢¥ as we shall see later.) Now we use v/F to prove existence and
uniqueness of the Mal’cev completions; as a by-product, we shall prove that
V'F is a free nilpotent Q-powered group.

Theorem 9.20. (a) Every torsion-free nilpotent group G of class c can be
embedded as a subgroup in a nilpotent Q-powered group G of the same nilpo-
tency class ¢ such that G=VG.

(b) The group G is unique up to isomorphism; moreover, every isomorphism
¢ : G — G ezxtends to an isomorphism of G onto &'. In particular, every
automorphism of G extends to an automorphism of G.

Proof. (a) We fix some set of generators for G = (g; |« € I) and con-
sider the free nilpotent group F' of class ¢ on the corresponding free generators
{e*" | i € I} constructed as in §9.1. The mapping e* — g; extends to a ho-
momorphism of F onto G; let N be the kernel of this homomorphism. Then
we may identify G with F/N. By Theorem 9.18 and Corollary 9.19, V/N is
a normal Q-powered subgroup of v/F. Then vF/v/N is also a Q-powered
group. We have VN N F = N, since if a € (VN N F)\ N, then the image
of a in G = F/N is non-trivial and has finite order, contrary to the fact that
G is torsion-free. Hence G can be identified with F/N/v/N. We can put
G=+VF /v/N. Indeed, this is a nilpotent Q-powered group of class ¢ which
coincides with VG = y/F VN / VN , since some power of every element in VF
belongs to F.

(b) Recall that for Q-powered groups, abstract isomorphisms are automat-
ically isomorphisms of Q-powered groups (Example 1.40). So we need only
construct an abstract isomorphism of H, = v/G onto H, = v/G'. Consider
the direct product H, x H, (identifying H; with the factors) and the subgroup
D = {(g,9%) | ¢ € G} in Hy; x H,, which is obviously isomorphic to G. Let
/D be the Q-powered subgroup of Hy x H, generated by D. We have

VDH,=H,xH, and VDnH;=1 (9.21)

for each ¢ = 1, 2. Indeed, for any (h1, h2) € Hy X Ho, there is k € N such that
hf € G. There is b € Hz such that A% = (h%)?; then (hy, hy)* = (k% hYF) =

(h (R¥)?) € D so that (hy,h}) € @ and (A1, h2) = (b1, h5)(1, Rk, ha) €

\/BHZ. As a result, H, x H, = V'DH,. A similar calculation proves that
VDH, = H, x H,. If (z,1) € VD N Hy, then (z,1)F = (z*,1) € D for some
k € N, whence z* = 1; this implies that = 1, since H is torsion-free together
with G. Thus, vV’ DNH, = 1; similarly vVDNH, = 1. It follows from (9.21) that
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the restriction of the projection 7y : (h1,hs) — k1 to VD is an isomorphism
o of VD onto H,; similarly, the restriction of =2 : (A1, hs) — h to VD is
an isomorphism 7 of v/D onto H,. Then the composition of ¢~ and 7 is the
required isomorphism of H; onto H,, which coincides with ¢ on G. (Note
that for each hy € H, there is a unique h, € Hj such that (h1, k) € \/D-;
this follows from (9.21) and is also encoded in the isomorphisms ¢ and 7: the
composition of o~! and 7 simply maps k; to this A;.) a

Corollary 9.22. /F is a free nilpotent Q-powered group of class c freely
generated by the e®.

Proof. Let U be a free nilpotent Q-powered group of class ¢ on free genera-
tors h;, v € I. The mapping h; — €* extends to a Q-powered homomorphism
9 of U onto +/F. By Corollary 9.19, U = /H, where H is generated by the A;
as an abstract group. Since F' is a free nilpotent group of class ¢, the mapping
e* — h; extends to an abstract homomorphism of F' onto H. As we saw in
the proof of Theorem 9.20, the latter extends to a Q-powered homomorphism
¢ of VF onto U’ = \/ﬁ, a Q-powered hull of H, constructed as \/F/\/N,
while F/N is identified with H. By Theorem 9.20(b), there is a Q-powered
isomorphism v of U’ onto U which extends the abstract isomorphism of F/N
onto H. The composition of ¥, ¢ and ¢ is the identity mapping of U since it
is identical on the set of its Q-powered generators:

hi ﬁ) e™ i> e N i) hi.

Hence ¢ is an isomorphism of U onto /F, so that +/F is a free nilpotent
Q-powered group of class ¢ on the free generators e*. a

Exercises 9

1. Check that log(e®) = a, €°6(1+%) = 1 4 q, and (e*)* = €* for any a € A,
ke Z.

2. Prove that v;(F) = (.—i4+1(F) in the free nilpotent group F of class c.
3. Prove that all elements of finite order in a nilpotent group form a subgroup.

4. Let G be a nilpotent Q-powered group. Prove that /(:(G) = Cl(\/(_;') and
G(G) = G(VG) N G for all i.

5. Prove that e—Ze¥e® = e¥tlval+ivazl/2+yz2,2]/30+-

6. Prove Remarks 9.4, 9.5.



Chapter 10

The correspondences
of A.I. Mal’cev and M. Lazard

This chapter is an immediate continuation of Chapter 9. The Baker-Haus-
dorff Formula and its inverses establish the Mal’cev Correspondence between
nilpotent Q-powered groups and nilpotent Lie Q-algebras. Unlike the asso-
ciated Lie ring, this construction cannot be applied to every nilpotent group,
but it provides a much better correspondence, a so-called “equivalence of cat-
egories”. As an application, we derive a corollary of Kreknin’s Theorem for
torsion-free nilpotent groups with regular automorphisms. Surprisingly, we
shall also be able to apply this technique to finite p-groups with “almost reg-
ular” p-automorphisms in Chapter 12. The Lazard Correspondence between
nilpotent p-groups and Lie rings of class < p — 1 is also based on the Baker—
Hausdorfl Formula; this gadget will be used in Chapters 13 and 14.

§ 10.1. The Mal’cev Correspondence

We continue to study the groups F, e?, the Lie ring L and the Lie alge-
bra QL constructed in §9.1 using the free nilpotent associative Q-algebra A
of class c. First, we prove a technical lemma, where ¢@% = {¢® | a € QL. =
A.N QL}, which obviously equals 1 + QL. = {1l +a |a € QL.}.

Lemma 10.1. We have /7.(F) = ¥ =1+ QL. = ’rc(eQL) = 1.(VF).

Proof. By Lemma 9.1(b), we have 7.(F) = 1 + L. = el<. Then, obviously,

VVe(F) = ¢€¥< = 1 4+ QL. The group 7.(e?) is generated by commutators
of the form [e*, ..., e%], a; € QL. Let ¥ be an endomorphism of Ag @ A that
extends the mapping mapping 1 — 1, z; — a;. Then

[e®1,...,e%] = [e,...,e%]?
= 1+[:z:1,...,:1:c]’9
= 1+4[a1,...,a] €1+QL,, (10.2)

whence

7e(VF) € 7:(¢?) € 14 QLe. (10.3)
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In the other direction, every element of the group 1 + QL. has the form

1+ Eaj [z.ﬁ) s azjc] = H ea,[-’v,l,...,:v,c], a; € Q
7 J

For every factor we have

N CT, R Tos o .
e e - 1+a.1[$.11)$.127'~~7z.1c]

1+ [aj:vjl, Lipy- - ’zjc]
— [eﬂ‘:"‘h, et sy Cz"c] (S 70(\/F-)’

where we used (10.2) again. As a result, 1/v.(F) = 1 + QL. C 75(\/—)
Together with (10.3), this yields the requlred equahtles

Now we can easily prove the following basic fact.

Theorem 10.4. V/F = ¢9F.

Proof. Since VF < ¢? we need only prove the inclusion e® C /F.
Induction on the nilpotency class ¢ of A. For ¢ = 1 the result follows from
Lemma 10.1. For ¢ > 1, the images of A, F, /F and QL in A/A, are naturally
isomorphic to the corresponding objects constructed for the class ¢— 1. By the
induction hypothesis, for every a € QL, we have ¢* = e*+b = (1 +b) = e®¢?,
for some e* € VF and b € A.. It remains to show that ¢ € VF. Since e isa
group by Corollary 9.14, we have e = e “e* € €@, whence b € QLNA, = QL..
Then € € %< =, /v.(F) < +/F by Lemma 10.1, as required. a

As an important corollary, we derive the inversions of the Baker-Hausdorff
Formula. By Theorem 10.4, for any z,y € QL, both e**¥ and e/*¥ are
elements of v/F. Moreover, there are certain universal formulae expressing e+¥
and el®¥ in terms of the Q-powered group generated by e and e¥. Indeed,
we have such expressions for the free generators of A:

€M1t = hy(e™, ™) and elor @l = (e e%2), (10.5)

where hi(e”!, €2) and hy(e®?, €*2) are some Q-powered group words in ¢** and
¢*2 (obtained from e** and e”2 by taking products and rational powers). We
may indeed assume that only elements e** and 2 are involved, by considering
the subalgebra of A generated by z; and z;, which is also a free nilpotent
algebra of class ¢. Since z) and z, are free generators of A, the same formulae
hold for any z,y € A, as images of (10.5) under the homomorphism of A
extending the mapping z;, =z, 2o =y, 1 — 1:

(e e’)  and el = hy(er, eY), (106)
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where the Q-powered group words h;, j = 1, 2, are the same as in (10.5). We
call (10.6) the Inverse Baker-Hausdorff Formulae. By Corollary 9.19, we may
assume that h1(e®, e®2) and ha(e™, e*2) are roots of some elements of F; it is,
however, more convenient to represent the h;(e*, e*2) as products of roots of
group commutators in e** and e®2.

Lemma 10.7. The Inverse Baker-Hausdorff Formulae (10.6) have the
following form:

8 e = (e, e) = e 117,
M

where r; € Q and the »; are group commautators in €*! and €2 of
weight > 2 taken in the product in some order agreeing with the
increase of the weight,

(b) elenaal = ho(en, ) = [, €] [[
7

where s; € Q and the x; are group commutators in e and e** of
weight > 3 taken in the product in some order agreeing with the
increase of the weight.

Proof. (a) Induction on the nilpotency class ¢ of A. If ¢ = 1, the assertion
is trivial: e*1t%2 = ¢®1¢%2. For ¢ > 1, the induction hypothesis gives

T Ty
117 = 1™ [[ o) +a =™ [] s} - ¢, (10.8)
J J

where r; € Q, the »; are commutators in e”! and e® of weight > 2, and
a € A.. Since em+%2 ¢®1¢%2 ] 5> € 2 we have

et = (e:vle:vz H%;_‘j)—l . e:z:1+:z:2 c GQL

by 9.14 and 10.4, whence @ € QL. and e* € ¢2; hence e* € 1/7.({e*1, e*2)) by
Lemma 10.1. Then e* = []; A;j(e®, €*2)*, where a; € Q and the );(e™, e72)
are some commutators of weight ¢ in €*1, e®2. This is the required form for the
last factor on the right of (10.8).

(b) Induction on the nilpotency class ¢. If ¢ = 1, then el*v*2 = 1 =
[e*1, e%2]. For ¢ = 2, we have el®v#2l = | 4 [z1,7,] = [¢®, ¢*2] by Lemma 9.1.
Let ¢ > 2; by the induction hypothesis, we have

elenz2] — (€71, e™?] H %;-’ +b=[e", €™ H %;-’ e, (10.9)
J J

where s; € Q, the s, are commutators in e®* and e*? of weight > 3, and
b € A.. Again, €& € €% and hence ¢® = []; p;(e™, e72)%, where §; € Q
and the p;(e™, e®?) are some commutators of weight ¢ in €1, e®2. This is the
required form for the last factor on the right of (10.9). a
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The expressions of Lemma 10.7 for hy (e, €72) and hy(e®™, €*2) for the nilpo-
tency class c—1 can be taken for the initial factors of the corresponding expres-
sions for nilpotency class ¢. Hence we may assume that these formulae are “the
same” for all ¢. From now on, we regard the right-hand sides of Lemma 10.7
as the fized expressions for the Inverse Baker-Hausdorff Formulae hy(e®,eY)
and hy(e®, e?).

Informally, the Baker-Hausdorff Formula H(z,y) transforms the Lie al-
gebra QL into the Q-powered group vVF = ¢, while the inverse formulae
h1(e%,€¥), ha(e®, €¥) transform the group 2L back into QL. We shall use the
free objects QL and 2 to extend this correspondence to arbitrary nilpotent
Q-powered groups and nilpotent Lie Q-algebras. This is a very good cor-
respondence indeed, an equivalence of categories: every statement in terms
of a nilpotent Lie Q-algebra can be translated into a statement in terms of
the corresponding Q-powered group, and conversely. However, we shall avoid
referring to categories and prove independently certain properties of this cor-
respondence (it is not always quite obvious what is the counterpart of what).

Instead of QL, we may consider the set €2l as a Lie algebra isomorphic
to QL, by keeping QL “upstairs”. That is, we define the new operations on
the set €2, addition, Lie bracket and multiplying by scalars, as follows:

et _'l‘_ et = eotb — hl(eu, eb); [eu, eb] — e[u,b] — hg(e“, eb).

b

(10.10)
rtet=¢€"=(e)", reqQ.

(The hats are used to avoid confusion with the operations in Ao @ A and QL.)
We denote by ;QTL the Lie Q-algebra on the set e?L with respect to the opera-
tions +, * and [, ], which is obviously isomorphic to QL under the isomorphism
¢* — a. These new Lie algebra operations in ¢l are expressed in terms of the
operations of the Q-powered group 2 by fixed formulae that are Q-powered
group words. Let us regard the Lie Q-algebra laws that hold in €@ for the
elements e*!, e, ¢** as equalities of some Q-powered group words in 2L, For
example, the commutative law for addition,

et + €™ =™ + %,
and the Jacobi identity,
le=, e, e & fie™, ] ] F [le, e 6] = ¢,

become equalities of Q-powered group words in ¢!, ¢*2, €™ on expressing the
hat-operations by (10.10). Now we can define the structure of a Lie Q-algebra
L on any Q-powered nilpotent group G of class c. To wit, we define the new
operations of addition, bracket multiplication and multiplying by scalars on
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the set Lg = G in terms of the Q-powered group operations of G by the same
formulae:

g1 + g2 = hi(91, 92); (91, 92] = h2(91,92); rg=g, reQ

(Here we can switch back to the usual notation for Lie algebra operations,
since there is no danger of confusion with any other operations.) To prove
that the laws of a Lie Q-algebra hold for any elements a,b,c € L under these
new operations, we apply the homomorphism of the free Q-powered group 2~
into G extending the mapping € — a, € — b, €® — c to the same laws
for e™,e%2,e™ € ¢@L written as equahtles of Q-powered group words in ¢@Z.
The L1e Q algebra Lg is nilpotent of class < c, because the nilpotency law
of class ¢ that holds on ¢@ = QL can also be written as a law of the free
nilpotent Q-powered group ¢2F and hence this law holds on G.

Conversely, instead of ¢?F, we can define the structure of a Q-powered
group QL* on the set QL with respect to the new multiplication axb = H(a, b)
(the Baker-Hausdorff Formula) and taking Q-powers " = ra, r € Q. Then
QL* is a Q-powered group isomorphic to ¢?C under the isomorphism a — €®.
The laws of a Q-powered group (associative law for multiplication *, etc.) for
x1,3,23 € QL* can be expressed as equalities of some elements of QL, Lie Q-
algebra words in z;, z;, 3. Now we can define the structure of a Q-powered
group Gjr on any nilpotent Lie Q-algebra M of class ¢, defining the group
operations on the set Gy = M by the same formulae:

m1 - ma = H(mi,my); m =rm, r €Q.

The laws of a Q-powered group hold for any a,b,c € G as images of the same
laws for z1, 9, £3 € QL* written as equalities in QL, under the homomorphism
of the Lie Q-algebra QL into M that extends the mapping z, — a, 2 — b,
z3 — ¢. The group Gy is nilpotent of class < ¢ because the nilpotency law

of class ¢ that holds on QL* = €2 can also be written as a law of the free
nilpotent Lie Q-algebra QL and hence holds on M.

If we construct the Q-powered group G —;, as described above, from the

poy R
Lie Q-algebra QL (with the operations +, * and [ ]) then we arrive at the
original group e?. Indeed, the sets are the same all the time, and we need
only to show that the operations are the same, that is, (e*)” = (e*)* =
re* and eve’ = e¢* x ' = H(e*,¢"), where H means the Baker Hausdorff
Formula applled with respect to the operatlons +,%and [ ] But ¢ — €% is an
isomorphism of Lie Q-algebras QL and ¢CL: hence r % e* = €™ = (e*)" and
I:I(e“,e”) = (v = ¢¥¢?) as required. The fact that Ga = ¢® can itself
be written as equalities of Q-powered group words in the free generators of
the free nilpotent Q-powered group ¢?C. Hence the same equalities hold for
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any elements of an arbitrary nilpotent Q-powered group G, which means that
Gr, = G. Similarly, Lg,, = M for an arbitrary nilpotent Lie Q-algebra M.

We summarize the above considerations as follows.

Mal’cev Correspondence 10.11. For every nilpotent Q-powered group
G, the corresponding nilpotent Lie Q-algebra Lg is defined on the same un-
derlying set Lg = G, with Lie Q-algebra operations a + b = hy(a,b), [a,b] =
ha(a,b), ra = a” for r € Q. Conversely, for every nilpotent Lie Q-algebra
M, the corresponding nilpotent Q-powered group Gy is defined on the same
underlying set Gy = M, with group operations a-b= H(a,b) and a" = ra for
r € Q. These transformations are inverses of one another: Lg,, = M as Lie
Q-algebras (that is, not only sets, but all operations coincide), and, similarly,
GL, = G as Q-powered groups.

Suppose that G = Gy is a nilpotent Q-powered group and M = Lg is
a nilpotent Lie Q-algebra that are in the Mal’cev Correspondence with each
other. Since the sets coincide, we have to adjust notation: to avoid confusion,
we denote by [a, b|pr commutators in the Lie algebra and [a, b]g those in the
group. Addition is, of course, for the additive group of the Lie algebra, and
multiplication is for the group. Note that a rational power a” in the group,
a € G, r € Q, is the rth multiple in the Lie algebra: G 3 a" = ra € M.
Lemmas 9.15 and 10.7 can be restated as follows.

Lemma 10.12. Suppose that a nilpotent Q-powered group G and a nilpo-
tent Lie Q-algebra M are in the Mal’cev Correspondence with each other:
G =Gp and M = Lg. Then, for any elements a,be G= M,

(a) a+b = h(a,b) = abll; »;, where r; € Q and the »; are group
commutators in a and b of weight > 2 taken in the product in some
order agreeing with the increase of the weight,

(b) [a,b]m = ha(a,b) = [a,b]cI1; »;’, where s; € Q and the s; are group
commutators in a and b of weight > 3 taken in the product in some
order agreeing with the increase of the weight,

(c) ab= H(a,b) =a+b+3;t;3;, wheret; € Q and the ; are Lie ring
commutators in a and b of weight > 2;

(d) [a,b¢ = K(a,b) = [a,b]p + 3; ujs;, where u; € Q and the x; are
Lie ring commutators in a and b of weight > 3. a

Now we prove some of the nice properties of the Mal’cev Correspondence.
Recall that the nilpotency class and the derived length of Q-powered groups are
defined via the corresponding laws, rather than series with abelian or central
factors. (The equivalent definitions based on such series can be more easily
produced using the Mal’cev Correspondence — Exercise 10.1.)
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Theorem 10.13. Suppose that a nilpotent Q-powered group G and a
nilpotent Lie Q-algebra M are in the Mal’cev Correspondence with each other:
G=GM andM:Lg.

(a) A subset H C G is a Q-powered subgroup if and only if H is a Lie
Q-subalgebra of M, and then H as Q-powered group is in the Mal’cev Corre-
spondence with H as a Lie Q-algebra.

(b) H is a normal Q-powered subgroup of G if and only if H is an ideal
of M.

(c) Hy is a normal Q-powered subgroup of a Q-powered subgroup Ha of G
if and only if Hy is an ideal of Hy in M, and then the factor-group H,/H,
is abelian if and only if the factor-algebra H,/H, is commutative; the factor-
group Hy [Hy is central in G if and only if the factor-algebra Hy/H, is central
in M.

(d) The nilpotency class of G coincides with the nilpotency class of M.

(e) The derived length of G coincides with the derived length of M.

(f) A mapping of the set G = M is an endomorphism of the Q-powered
group G if and only if it is an endomorphism of the Lie Q-algebra M. In
particular, the automorphism groups AutG of the Q-powered group G and
Aut M of the Lie Q-algebra M coincide as permutation groups of the set G =
M.

(g) The Q-powered group G is free nilpotent of class c on the set of free
generators X if and only if the Lie Q-algebra M is free nilpotent of class c on
the set of free generators X.

Proof. (a) A subset H is closed under the operations of the Q-powered
group if and only if H is closed under the operations of the Lie Q-algebra,
since the operations in one object are expressed as formulae in terms of the
operations in the other. If this is the case, H as a Q-powered group is in the
Mal’cev Correspondence with H as a Lie Q-algebra by the definition.

(b) If a Q-powered subgroup H is normal in G, then [h,g] € H for any
h € H, g € G, and all commutators of greater weight involving & and g¢
belong to H together with all their Q-powers. By Lemma 10.12(b), we then
have [h,g]m € H too, so that H is an ideal. Conversely, if H is an ideal,
Lemma 10.12(d) shows that H is normal in G.

(c) Since H; as a Q-powered group is in the Mal’cev Correspondence with
H; as a Lie Q-algebra, (a) and (b) imply that H; is a normal Q-powered
subgroup of H, if and only if H, is an ideal of Hz. The factor-group H,/H, is
abelian if and only if [k, h']¢ € H, for any h,h' € H;. By Lemma 10.12 this
is equivalent to [h,h']p € H; for any h,h' € Hj, which, in turn, means that
Hy/H, is a commutative factor-algebra. The factor-group H,/H, is central
in G if and only if [h,g]¢ € Hy for any h € H; and g € G. By Lemma 10.12
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this is equivalent to [k, g]ps € H) for any h € H; and g € M = G, which means
that Hy/H, is a central factor-algebra.

(d) Let cpr and cg be the nilpotency classes of M and G respectively. Then
cum < ce < cpr as noted earlier, whence cpr = ¢g.

(e) Suppose that M is soluble of derived length k; then the M() form a
series of ideals of M of length k¥ with commutative factor-algebras. By (c),
the same sets form a normal series of G with abelian factor-groups, and hence
G is soluble of derived length < k. Now suppose that G is soluble of derived
length d, that is, the law 84(2z1,... ,254) = 1 holds on G. Then G is soluble
of derived length d as an abstract group too: G® = 1, for the abstract dth
derived subgroup. We use induction on s to prove that M) C /G for
all s. For s = 0 we simply have M = G. Suppose that M*) C VG®),
For any a,b € M®) C +/G® there are m,n € N such that a™ b € G®.
Then, by Lemma 10.12(b), mn[a,blps = [ma,nbly = [a™,b"]p is a product
of roots of group commutators in a™ and b”, all these commutators lying
in [G®), G®] = G*+1)_ Since vG(k+) is a subgroup, we obtain that [a, b]5" =
mnla,blyr € VG*+) and hence [a,b]y € VG, Tt follows that M(+1)
which is equal to +<[a, blm | a,b € M(k)>, is contained in V'G*+1) which is an
ideal of M by (b). This completes the induction step; as a result, we have
M@ C V/G@) = /1 =1 = 0y, since G is torsion-free. Thus, dps < dg, for the
derived lengths of M and G respectively. Together with the reverse inequality
dg < dps proved above, this gives dy = dg.

(f) If @ is a homomorphism of G (of M) into itself, then the same mapping
« of the set G = M is a homomorphism of M (respectively, of G), since
the operations in M (in G) are expressed as fixed formulae in terms of the
operations of G (in M) and hence are preserved under a.

(g) If G is a free nilpotent Q-powered group, we can identify G with e@F
constructed as above, for suitable nilpotency class ¢ and the cardinality of
the set of free generators. Then M = Lg = QL is a free nilpotent Lie Q-
algebra. Similarly, if M is a free nilpotent Lie Q-algebra, then M can be
identified with a suitable QL constructed as above. Then G = Gpr = ¥ is
a free nilpotent Q-powered group. A set of free generators of one object is a
set of free generators of the other, since the z; correspond to e* under those
isomorphisms QL = L. and Ggr = eQL, O

As an application of the newly acquired technique, we prove here the follow-
ing analogue of Kreknin’s Theorem for (locally) nilpotent torsion-free groups
with regular automorphisms of finite order.

Corollary 10.14. If a locally nilpotent torsion-free group H admits a
reqular automorphism ¢ of finite order n, then H is soluble of derived length
at most k(n), where k is Kreknin’s function.



10.2. The Lazard Correspondence 121

Proof. Since the law of solubility of given derived length involves only
finitely many variables, it is sufficient to prove that every finitely generated
subgroup K of H is soluble of derived length at most k(n). Replacing K by the
p-invariant subgroup <K , K ...,K “’"—1>, which is also finitely generated, we
may consider only finitely generated ¢-invariant subgroups. So let us assume
that H is finitely generated and hence nilpotent from the outset. In accordance
with Theorem 9.20, let G = /H be the Q-powered hull of H, and let &
denote the extension of ¢ to an automorphism of G. Then @ is a regular
automorphism of G: if g = g # 1 for g € G, then (¢¥)* = ¢* € H for
some k € N and g* # 1, since G is torsion-free; a contradiction with the
hypothesis Cy(¢) = 1. Let M = Lg be the Lie Q-algebra in the Mal’cev
Correspondence with G. By Theorem 10.13(f), the same bijection & of the
set M = G is an automorphism of M. This is a regular automorphism since
Cum(@) = Cg(@) = 1 = 0p. Of course, @ as an element of Aut M has the
same finite order n. By Corollary 7.27, M is soluble of derived length < k(n);
hence, by Theorem 10.13(e), G is soluble of the same derived length < k(n),
and so is H. ad

Remarks. 10.15. It can be proved that the Inverse Baker-Hausdorff
Formulae %, h, are unique, for a fixed ordered sequence of the so-called basic
commutators.

10.16. Although every statement about nilpotent Lie Q-algebras can be
translated into a statement about nilpotent Q-powered groups, using Lie rings
in the proof of Corollary 10.14 seems to be a genuine advantage; it is unlikely
that this proof could have been invented in terms of nilpotent Q-powered
groups.

§10.2. The Lazard Correspondence

Let o be some set of prime numbers. An integer is said to be a o-number
if it is a product of powers of primes from ¢. A group H is o-divisible if for
every o-number n, every element & € H has an nth root of & in H, an element
g € H such that g" = h. A group is o-torsion-free if it has no elements whose
orders are g-numbers.

Example 10.17. Every p-group is p’-divisible, where p’ denotes the set of
all primes distinct from p. All p'-roots of a p-element g can be found as powers
of g, since, for a p’-number n, the mapping & — A™ is an automorphism of the
cyclic subgroup (g). Clearly, every p-group is p’-torsion-free.

Keeping an eye on the prime divisors involved, one can see that literally
the same arguments prove the following analogue of Lemma 3.16.
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Lemma 10.18. If 2™ = y", for a o-number n and for elements z,y in a
o-torsion-free nilpotent group, then z = y. a

For a subgroup H of a group G, we denote by v/H the set {g € G | g" €
H for some o-number n = n(g)}. The same care taken of the prime divisors
in the proof of Theorem 9.18 gives the following analogous result.

Theorem 10.19. If H is a subgroup of a nilpotent group G, then ¥/H is
a subgroup. If A < B for some subgroups A, B < G, then /A < /B. a

Let Q, denote the ring of all rational numbers whose denominators are o-
numbers. By definition, the o-divisible o-torsion-free groups are Q,-powered
groups, algebraic systems that are groups with additional unary operations of
taking powers in Q, satisfying the laws (z7)* = 2" for all r,s € Q,. The
Mal’cev Completion Theorem 9.20 can be specialized as follows.

Theorem 10.20. (a) Every o-torsion-free nilpotent group G of class ¢ can
be embedded as a subgroup in a Q,-powered nilpotent group G° of the same
class ¢ such that G = JG.

(b) The group G is unique up to isomorphism; moreover, every isomor-
phism ¢ : G — G’ extends to an isomorphism of G onto G . In particular,
every automorphism of G eztends to an automorphism of G°.

(c) If F is a free nilpotent group of class c on the free generators e,
then /F is the free nilpotent Q,-powered group of class ¢ freely generated by
the e™.

Proof. Existence is proved along the same lines as for Theorem 9.20, where
o was the set of all primes. That is, we identify G with F//N, where F' = (e*)
is a suitable free nilpotent group from §9.1. Then it is similarly proved that
YN N F = N so that we can put G° = VF|/N, where /F = {¢" | ¢ €
F, r € Q,} is a Q,-powered group by Theorem 10.19. Extending isomorphisms
is proved similarly to the proof of Theorem 9.20(b). The proof of (c) is similar
to that of Corollary 9.22. a

There is, however, a significant difference with what gave us the Mal’cev
Correspondence in §10.1. In general, there is no good correspondence between
¢/F and its would-be counterpart in QL, the Lie Q,-algebra Q, L. First of
all the set e®L = {e"' |l € L, r € Q,} may not be a group, because, when
o is small and the nilpotency class c is large, the Baker—-Hausdorff Formula
H(z,y) = log(e®e?) may well have denominators of coefficients at commutators
in z,y that are not o-numbers.

But the desired correspondence does exist in some special cases. Given the
nilpotency class ¢ of A, we fix for what follows the set 7 = w(c!) of all primes
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not greater than c. By the explicit form of the Baker-Hausdorff Formula
(9.16), the denominators of the coefficients of H(z,y) at commutators in z,y
are all m-numbers. In other words, H(z,y) is a Lie polynomial over Q,, with
coeflicients from Q, at commutators in z, y.

Corollary 10.21. The set €L is a Q,-powered group.

Proof. Indeed, this set is closed under the multiplication e*e’ = eH ()
and, obviously, under taking inverses. It is also clear that e@L is closed under
taking w-roots. a

Since e* € €L for all 4, it follows that F < JF < ¥l For anyc D«
the same argument shows that ¢@-L is a Q,-powered group and V/F < @,
Moreover, essentially the same argument as in the proof of Theorem 10.4 yields
the equality.

Theorem 10.22. For any o 2 « = =(c!), we have /F = %L

Proof. The inclusion ¥/F C @7 is already noticed above. To prove the
inclusion @~ C {/F, we follow the proof of Theorem 10.4. By the induction
hypothesis, for any ! € Q, L we have

e =e'+a=e"(l+a)=e"e,

where ¢ € /F and a € A.. We need only to ensure that e* € J/F. We have
u € Q,L, since VF < 2L and hence e® = e'e™ € ¢@L, since ¢%L is a
group. Thus, a € Q, LN A. = Q,L.. Then a = T; a;sj(zi), where o € Q,
and the s;(z;) are Lie ring commutators of weight c in the z;. By Lemma 9.1,
we have

@ =1+a=1+Y am(z) = [[ ()% € /F,
7 7

where the s;(e®) are group commutators of weight ¢ in the e*, as required.
a

Now for any z,y € Q, L, both ¢**¥ and ¢/*¥ are elements of ¥/F. Again,
there are universal formulae expressing e*+¥ and el*¥l in terms of the oper-
ations of the Q,-powered group generated by e® and e¥ (actually, the same
Inverse Baker-Hausdorff Formulae (10.6), as may be seen from the proof of
Theorem 10.22). First we write such formulae for the free generators of A:

eS1ter — hi(e™,e™) and elrn®] — ha(e™, €7), (10.23)

where hy(e®*, ") and hy(e®™,e™) are some Q,-powered group words in e
and e¢”>. Then homomorphisms of A into itself show that the same formulae
hold for any z,y € A.
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Similarly to what was done in § 10.1, we use the free Q,-powered nilpotent
group Y/F and the free nilpotent Lie Q,-algebra Q, L of class c to obtain the
Lazard Correspondence between arbitrary nilpotent Lie Q,-algebras of class
< ¢ and nilpotent Q,-powered groups of class < ¢ (recall that = = =(c!)).
That is, for every nilpotent Q,-powered group G of class < ¢, the nilpotent
Qr-algebra Lg is defined on the same underlying set Lg = G with Lie Q,-
algebra operations a + b = hi(a,b), [a,b] = ha(a,bd), ra = a” for r € Q,.
Conversely, for every nilpotent Lie Q,-algebra M of class < ¢ a nilpotent Q,-
powered group G is defined on the same underlying set Gy = M with the
group operations ab = H(a,b) and a" = ra, r € Q,. These transformations
are inverses of one another: Lg,, = M as Lie Q,-algebras and G, = G
as Q,-powered groups. Lemma 10.12 continues to hold, with all coefficients
and exponents in Q,. Every statement in terms of the Lie Q,-algebra M can
be transformed into a statement in terms of the Q,-powered group Gus, and
conversely (an equivalence of categories). An analogue of Theorem 10.13 can
be proved in exactly the same way.

The following will be our main application of the Lazard Correspondence
to finite p-groups. From now on, let 7 = =((p — 1)!) be the set of all primes
less than the given prime p.

Example 10.24. Suppose that P is a finite p-group of nilpotency class <
p — 1. As shown in Example 10.17, P is =-divisible and =-torsion-free, that
is, P is a nilpotent Q,-group. Conversely, every nilpotent Lie ring of class
< p — 1 whose additive group is a p-group can be regarded as a nilpotent
Lie Q,-algebra. Thus, as a specialization of the general construction, we have
the Lazard Correspondence between nilpotent p-groups of class < p— 1 and
nilpotent Lie rings of class < p — 1 whose additive group is a p-group. The
situation here is even better, since all abstract (normal) subgroups of P are
automatically n-divisible and hence are Lie Q,-subalgebras (ideals) of M =
Lp. For example, we obtain at once that [M,M] = [P, P] as the smallest
normal subgroup of P (ideal of M) such that the factor-group (factor-algebra)
is abelian.

The precondition of applying the Lazard Correspondence to finite p-groups,
the nilpotency class to be < p — 1, is, of course, quite a restrictive one. Nev-
ertheless, there are situations where these conditions can be met (see Re-
mark 10.29). We shall apply the Lazard Correspondence in Chapters 13 and
14 to perform fast reductions to Lie rings in the proofs of two of the main re-
sults on almost regular p-automorphisms of finite p-groups (which also yields
a substantial reduction of the length of the arguments!). Here we give only

a few examples of applications to p-groups, beginning with a useful formula
that will be needed later.
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Lemma 10.25. Let p be a prime number. For any elements a,b in a

finite p-group, we have (ab)? = a?bPc? (mod v,(G)) for some c € [G, G], where
G = {a,b).

Proof. We may assume that 7,(G) = 1; then we need to prove that
bPa"P(ab)? = P for some ¢ € [G,G]. Since the nilpotency class of G is
< p—1, we can apply the Lazard Correspondence: let M = Lg be the cor-
responding Lie Q,-algebra. We calculate the product b=?a~?(ab)® in terms
of the Lie ring operations. Since here the Baker-Hausdorff Formula is a
polynomial over Q, (that is, the denominators of all coefficients are coprime
to p), we have (ab)? = pH(a,b) = pa + pb + pc; for some ¢ € [M,M];
then a~?(ab)? = H(—pa, pa + pb + pc1) = pb + pc, for ¢, € [M, M]; then
b~?a"?(ab)? = H(—pb, pb+ pcy) = pc for some c € [M, M]. Since [M,M] =
[P, P] (Example 10.24) and pc = c?, the result follows. a

Example 10.26. Suppose that P is a finite p-group of nilpotency class
<p—1 and ¢ € Aut P is such that P/®(P) = (@) X - - - x (@p) with & = @41,
where i + 1 is taken modp. Then Cpre(p)(v) = Cp(p)®(P)/®(P).

Proof. Let the a; denote some preimages of the ;. It is easy to see that
the product @ ---a, generates Cp/o(p)(¢), so we need only show that there
is an element of Cp(y) in the coset a;---a,®(P). We turn P into a Lie
Q,-algebra M by applying the Lazard Correspondence. Then ¢ is also an
automorphism of M, acting on the same set M = P in the same way. The
required fixed point is then a; +af +--- + a‘fp—l. In terms of the group P, its
image in P/®(P) is a;-af--- a‘fp—l(D(P), which coincides with a, - -- a,®(P),
because in the inversion formula z + y = zycjcz--- the ¢; are (powers of)
commutators in z,y, all lying in ®(P). a

The Lazard Correspondence can sometimes help in constructing certain
examples, which can be easier for Lie rings.

Example 10.27. Let p be an odd prime and let e;,e3, €3 be linearly
independent generators of the additive group of the Lie ring (Z-algebra) M
with structural constants

[61, 62] = pes, [62, e3] = péey, [33, e1] = pes.

It is easy to see that v,(M) = p"'M and M@ = p>’~'M. The factor ring
M /pP~' M is nilpotent of class p—1 and its additive group is a p-group. Hence
we can apply the Lazard Correspondence to obtain a nilpotent p-group P on
the same set. It is easy to see that the linear transformations «a;, o, defined
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by

ay: € — —¢€;, €z — —€2, €3 — €3}
Qg €1 — €, €2 — —€2, €3 — —e€3

are automorphisms of M and hence induce automorphisms of M/p?~ M. The
group A = (o, ;) is elementary abelian of order 4, and it is easy to see
that Carjpp-1m(A) = 0. The same group A is an automorphism group of P,
with Cp(A) = 1. Note that the derived length of P, which is equal to that
of M/pP~' M, grows to infinity with the growth of p, that is, it is not bounded
by any constant (“depending” only on A). This shows that there is no direct
analogue of Kreknin’s Theorem for non-cyclic regular groups of automorphisms
of nilpotent p-groups. Remark 7.35 produced simple Lie algebras with a regular
non-cyclic group of automorphisms of order 4. But this example shows that
even nilpotency and finiteness of the group do not help (as they do for regular
automorphisms, compare with Remark 7.32).

Example 10.28. The same trick with the following Lie algebra over F,
shows that the derived length of a finite p-group of maximal class can be
arbitrarily large (of course, only with the growth of p, in view of Theorem 8.1,

say). The basis is {eq, €2,... ,€,}, and the structural constants are
(1’_])614'.17 if 1’+]Sp,
[ei, 5] = e
0, if i+5>p.

This example was constructed by B. A. Panférov [1980]; it answered a question
raised by C. R. Leedham-Green and S. McKay [1976].

Remarks. 10.29. The exponential map and the Baker-Hausdorff Formula
play an outstanding role in the theory of Lie groups. The Mal’cev Correspon-
dence for discrete groups is also widely applied in the theory of torsion-free
(locally) nilpotent groups. But applications of the Baker-Hausdorff Formula
in the theory of finite groups are rare. As G. Higman remarked in his address
at the International Congress of Mathematicians in Edinburgh [1958], the re-
strictive preconditions of such applications are “...too severe to be used..., ...the
sort of thing one wants in the conclusion of one’s theorem, rather than in the
hypothesis”. This makes it even more interesting to see some more examples
of applications of the Baker-Hausdorff Formula to finite groups.

e R.Baer [1938] discovered the special case of the Lazard Correspondence
in a classification of nilpotent p-groups of class 2 for odd p.

e The special case of Example 10.26 when the group is nilpotent of class 2
is due to J. G. Thompson [1964b], where this result on p-groups was used
to prove an important fact on so-called signalizers; however, the proof
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was based on a lemma of N.Blackburn [1958] on p-groups of maximal
class (which, in turn, can be deduced from the result of Example 10.26
for class 2).

e Then H. Bender [1967] extended J. G. Thompson’s signalizer theorem by
using R. Baer’s construction.

e Similarly to Examples 10.27, 10.28, the Lazard Correspondence was
used to construct certain subdirect products (as in Exercise 3.17) of
unbounded nilpotency class in [E. I. Khukhro, 1982].

e In the very recent work J. Alperin and G.Glauberman [1997] use the
Lazard Correspondence to prove certain generalizations of the Thomp-
son—Glauberman replacement theorem for finite p-groups of class < p—1.

e We shall use the Lazard Correspondence in Chapters 13 and 14, and the
Mal’cev Correspondence will be used in Chapter 12.

10.30. Example 2.10 shows implicitly that there can be no correspondence
of Lazard type for class p (for p = 2); and [A.V.Borovik and E.I. Khukhro,
1976] and [E. I. Khukhro, 1979] contain similar examples for all p (and even for
groups of exponent p and of derived length 2).

10.31. It is worth to mention that the Baker~-Hausdorff Formula was used
in the works of W. Magnus [1950-53] and I. N. Sanov [1952], where they proved
that the associated Lie ring of a group of prime exponent pis a (p—1)-Engel Lie
algebra of characteristic p (although it was neither the Mal’cev, nor the Lazard
Correspondence that was used, but some properties of the Baker-Hausdorff
Formula itself).
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Exercises 10

1. Use the Mal’cev Correspondence to prove that a nilpotent Q-powered group

(a) has nilpotency class c if and only if it has a central series of Q-
powered subgroups of length c;

(b) has derived length d if and only if it has a (sub)normal series
of Q-powered subgroups with abelian factors.

2. Use the Lazard Correspondence to determine all groups of order p®, where
p is an odd prime.

3. Suppose that G is a torsion-free nilpotent group admitting a regular auto-
morphism of order 4. Prove that 3(72(G)) = 1. [Hint: Use Exercise 7.4.]

4. Let p be an odd prime, P a finite p-group, and ¢ € Aut P such that p{ |¢|.
Suppose that ¢ centralizes all elements of order p in P. Prove that ¢ = 1.
[Hint: By induction, ¢ acts trivially on all ¢-invariant subgroups of P; by
Exercise 3.22, P is nilpotent of class 2. Apply the Lazard Correspondence
and use Exercise 2.5 to obtain the decomposition L = CL(¢) ® U for the
additive group of the corresponding Lie ring, with ¢-invariant U]

5. [N.Blackburn, 1958] Use Example 10.26 and the fact that every p-group
of maximal class contains an element with centralizer of order p? to prove
that the following group cannot be a proper factor-group of a p-group of
maximal class, if p # 2:

G = (@) x - x (@) X (5)

with @ = @4, where ¢ + 1 is taken mod p, and |@;| = |v| = p for all <.
[Hint: If false, G = P/(z), where P is of maximal class and (z) = Z(P)
is of order p. Show that the image of the element v with centralizer of
order p? in P can be assumed to be . Let the u; denote some preimages
of the #;. Then the subgroup (u,...,u,) has nilpotency class at most 2.
Apply Example 10.26 to the inner automorphism ¢ induced by v to get
a fixed point of ¢ in the coset u;---u,(z). Then the centralizer of v has
order p?, since both z and v also belong to Cp(v), a contradiction.]

6. Prove that the unitriangular group UT,(Q) (see Exercise 2.2) is Q-powered
nilpotent. Prove that the Lie Q-algebra that is in the Mal’cev Correspon-
dence with UT,(Q) is isomorphic to the Lie Q-algebra of null-triangular
matrices

0 *
nt,(Q) = *€Q
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(where the addition is component-wise and the Lie product of matrices A, B
is [A, B = AB — BA). [Hint: Compute ¢ for A € nt,(Q) within the ring
of matrices, treating e# as a matrix polynomial (A" = 0 for A € nt,(Q)),
and show that A — ¢ is an isomorphism of Lie Q-algebras nt,(Q) and
Lyt (@]

. Check Example 10.28.

. Let G be a finite p-group of nilpotency class < p— 1. Prove that G? = {z* |
z € G}.

. Suppose that G is a Q-powered group all of whose 3-generated subgroups
are nilpotent. Prove that the Inverse Baker-Hausdorff Formulae can be
applied to define a structure of a Lie Q-algebra on the same set G.



Chapter 11

Powerful p-groups

The theory of powerful p-groups was created by A.Lubotzky and A. Mann
[1987]; it was also anticipated in an earlier work of M. Lazard [1965]. Powerful
p-groups have already found several applications in the theories of finite p-
groups, of pro-p-groups, of residually finite groups, of groups with bounded
ranks, of groups of given coclass, etc. One can say that the theory of powerful
p-groups reflects the properties of the “linear part” of a finite p-group of given
rank. Applications to finite p-groups with almost regular p-automorphisms are
based on the bounds for the ranks in terms of the number of fixed points and
the order of the automorphism (§2.2). The exposition in this chapter follows
[A.Lubotzky and A. Mann, 1987] and includes some lemmas from [A. Shalev,
1993a] and [J. D. Dixon et al., 1991]. The proofs, however, are here inflated to
a more verbose form, to make them accessible for a beginner; some sharper
bounds are sacrificed for the same reasons. We shall consider only the case
when p is an odd prime; the same results hold for p = 2, but the definitions
and some proofs are a little different (although not more difficult) and are left
as exercises to the reader.

§11.1. Definitions and basic properties

Throughout the chapter, p denotes a fixed prime number, which is assumed
odd, if not otherwise stated. Recall that H? = (2? | z € H) is the subgroup
generated by the pth powers of all elements of H.

Definition 11.1. A subgroup N of a finite p-group G is powerfully em-
bedded in G if N? > [N, G] (for p =2, if N* > [N, G)).

Note that a powerfully embedded subgroup is normal by definition. Since
(N®)? = (N?)® and [N¥,G¥] = [N, G]® for any homomorphism ¢ (see 1.7 and
(1.14)), the image of a powerfully embedded subgroup is powerfully embedded
in the image of the group and, in particular, in any factor-group. We shall
freely use this fact in what follows. We begin with two lemmas.

Lemma 11.2. A normal subgroup K in a finite p-group G is powerfully
embedded in G if [K,G] < K?[K,G,G].

Proof. Taking the commutator subgroup with G, we obtain (using 1.17)
that [K,G, G| < [K?,G|[K, G, G,G], so that [K,G] < K?[K, G, G,G]; and so
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on. As a result, [K,G] < K?[K,G,... ,(2 for every s € N, whence [K,G] <

s

K? since @ is nilpotent. a

Lemma 11.3. If M and N are normal subgroups of a finite p-group G
such that [M,N,G,G] =1, then [M?,N] < [M, N]P.

Proof. Applying the standard formula [ab, ¢] = [a, ¢]*[b, ¢] several times, we
have, for any m € M and n € N,

[mp? n] = [mp—l, n]m[ma n] = ([mp—z, n]m[ma n])m[m, n] =
= (...((fm,n]™[m, n])™[m, n])™...)"[m,n].

Since a® = a[a,b] and [m,n,a,b] = 1 for any m € M, n € N, a,b € G, we
obtain

[m?,n] = [m, nlf[m, n, m]P®~D"2 € [M, N]?
(recall that p # 2). We may assume that [M, N]? = 1; then we need to prove
that [M?,N] = 1. We already have [m?,n] = 1 for any m € M, n € N,
which means that m? € Cg(N). Since M? = (m? | m € M) and Cg(N) is a
subgroup, we have M? < Cg(N), so that [M?, N] = 1, as required. a

Theorem 11.4. If M and N are powerfully embedded subgroups in a finite
p-group G, then
(a) [M,N] is powerfully embedded in G,
(b) M? is powerfully embedded in G;
(¢) MN is powerfully embedded in G.

Proof. (a) By Lemma 11.2, we may assume [M, N,G,G] = 1. By Corol-
lary 3.3, [M,N,G] < [M,G,N][M,[N,G]]. Since M and N are powerfully
embedded, the right-hand side is contained in [M?, N][M, N?], which is con-
tained in [M, N]? by Lemma 11.3.

(b) We need to prove that [M?,G] < (M?P)?. By Lemma 11.2, we may
assume that [M? G, G] = 1. Since M? > [M, ] by the hypothesis, it follows
that [M,G,G,G] = 1. Then, by Lemma 11.3, [M?,G] < [M,GJ?. The sub-
group on the right is contained in (M?)?, since [M, G] < M? by the hypothesis.

(c) We have [MN,G] < [M,G][N,G] < MPN? < (MN). a

Definition 11.5. A finite p-group is powerful if it is powerfully embedded
in itself, that is, if [G,G] < G? (for p = 2, if [G,G] < G*).

Corollary 11.6. If G is a powerful p-group, then [G,G], G?, &(G), G*
and v,(G) for all k € N are powerfully embedded subgroups. a

We shall need two more lemmas.
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Lemma 11.7. If N is a powerfully embedded subgroup of G, then, for any
h € G, the subgroup H = (h)N is a powerful p-group and [H, H] < NP.

Proof. We show first that [H,H] = [H,N]. Indeed, by Lemma 1.17,
(H,H] = [(WN,H] = (), H]IN, H], since [(), H] < H, and [H,(R)] =
[V{R), (B)] = [N, (W)[{AY (W] < [N, H, since [V, (h)] < N(h). Now we have
H? > N* > [N,G] > [N, H] = [H, H]. g

Lemma 11.8. If a p-group P is nilpotent of class 2 and p # 2, then
Pr = {a2? | z € P}.

Proof. By Lemma 6.14, (ab)? = a?b?[b,a]?®~1)/2 for any a,b € P, whence
a?b? = (ab)?[a, b]P®~1)/2 = (ab[a,b)®~1)/2)P (recall that p > 2). It follows that
every product of pth powers is a pth power as well. a

Powerful p-groups enjoy many properties of abelian groups, like those in
the following three theorems.

Theorem 11.9. If G is a powerful p-group, then the subgroup GP coincides
with the set {2? | ¢ € G} of pth powers of elements of G.

Proof. Induction on |G|. The factor-group G/(GP)? is nilpotent of class 2,
since [G,G,G] < [G?,G] < (GP)? because GP is powerfully embedded in G
by Theorem 11.4. By Lemma 11.8, any product of pth powers in G/(G?)? is
again a pth power. So, for every a € G?, there is b € G such that a € ¥(GP).
Put H = (b, G?); then H is powerful by Lemma 11.7, and a € H?. If H # G,
then a € {2? | z € H} by the induction hypothesis. If, however, H = G, then
G = (b, G?) = (b) is cyclic by Theorem 4.7 since G < ®(G), and the theorem
obviously holds for cyclic groups. a

Theorem 11.10. If G is a powerful p-group, then

(a) for every k € N the subgroup GP* coincides with the set {z”kl z € G}
of p*th powers of elements of G; in particular, (GP' )’ = GP"’ for all
i,j EN;

(b) G** is powerfully embedded in G for all k € N;

(c) the GP' form a central series of G; if p° is the ezponent of G, then G
is nilpotent of class <.

Proof. We prove (a) and (b) simultaneously by induction on k. For k =1,
Theorem 11.9 implies (a) while Theorem 11.4(b) implies (b). For £ > 1,
we have G?*' = {2#*”" | z € G} and G**7 is powerfully embedded by the
induction hypothesis. Then, by Theorem 11.9,

k

G =("|2€G)=(s1yeC ) ={ylyeC T} ={* |z G},
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and G7* = (GP* ') is powerfully embedded by Theorem 11.4(b).
(c) We have [G”',G] < (G )? = G*'*" by (a) and (b). a

Theorem 11.11. Suppose that a powerful p-group G = (ay,...,ax) is
generated by elements ay, ... ,ar. Then G? = (a},... ,d}).

Proof. Since G** < ®(G?), we may assume that G?* = 1, by Theorem 4.7.
By Theorem 11.10, it follows that G is nilpotent of class 2 and [G,GJP <
(GPY? = G” = 1. By Lemma 6.14, we then have (zy)? = zPy?[y, z]P®-1/2 =
zPy? for all z,y € G. The subgroup G? is generated by the pth powers of
products of the elements a;, for which

Y4
ik

= =af ... 4
=..=ay G, 0.

(@iy -+ @iy, aik)p = (@i, - aik—1)pa
Hence GP is generated by the a?. a

In subsequent chapters, we shall many times use the following important
lemma, due to Shalev [1993a] (the inclusion [M?', N*’] C [M, N]"*’ was known
before).

Interchanging Lemma 11.12. If M and N are powerfully embedded
subgroups in a finite p-group P, then [M? N?'] = [M,N"*’ for all i,j € N.

Proof. By Theorem 11.10, it is sufficient to prove that [M?, N] = [M, N]?.
Our first objective is to show that [m?,n] = [m, n]? (mod [M, N]?*) for every
m € M,n € N. Let K = (m, [m,n]). By Lemma 10.25, we have
(m[m,n])? = m®[m,n]’ (mod K, K]Py,(K)).

Hence

[m,nff = m™P(m[m,n])’ = m™P(m")F = m™*(m?)"

= moPmPlm?, ] = [, n] (mod [K, K]Pr(K).
Now we show that [K, K]Py,(K) < [M,N”*. By Lemma 3.6(c), 7,(K) =
¥p({m, [m,n]) is generated by simple commutators of weight > p in m*! and

[m,n]%!. If non-trivial, such a commutator must involve an entry of [m,n]*!
in the first or second position. Hence

1w(K) < [[M,N),M,...,M] < [M,N,G,G] < [[M,NF,G] < [M,N}”",

since the ambient subgroups are powerfully embedded. For the same reasons,
[K,K)] < [M, N, M], and hence [K, K]? < [M,N, M]? < [M, N]”.
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Thus, we have [m?,n] = [m,n]? (mod [M, N]?*) for any m € M, n € N.
The subgroup generated by the elements [mP,n], m € M, n € N, equals
[MP, N], since M? = {m? | m € M} by Theorem 11.9. The subgroup gen-
erated by the elements [m,n]’, m € M, n € N, equals [M, N]?, since [M, N]
is generated by the [m,n] and hence [M, NP is generated by the [m,n]?
by Theorem 11.11. The generating sets are the same mod [M, N]J?*; hence
[M?, N][M, N]P* = [M, NJ?[M,NJP* = [M, N]°. Since [M, N]* < &([M, N]?),
the required equality [M?, N] = [M, N]? follows by Theorem 4.7. a

Interchanging Corollary 11.13. If G is a powerful p-group, then
7(G?P") = 7(G)P* and (G*")® = (GO for all i,s € N. a

Now we show that taking pth powers induces homomorphisms of abelian
sections in powerful p-groups, similarly to abelian groups.

Lemma 11.14. Suppose that B < A are two powerfully embedded sub-
groups of a finite p-group P such that A/B is abelian. Then the mapping
z — 2" induces a homomorphism of A/ B onto AP [BP™, for any m € N.

Proof. First, we consider the case of m = 1. For z € A, the mapping
of cosets ¥ : £B — 2PBP? is well-defined. Indeed, for any b € B, we have
(zb)? = zPbPz, where z € [(z, B),(z,B)] < B? by Lemma 11.7. Since A? =
{z? | z € A} by Theorem 11.9, we have (A/B)? = A?/BP. Now we show that
¥ is a homomorphism. For any z,y € A, by Lemma 6.14, we have (zy)? =
zPyP[y, z]PP-1/2y where u € [[4, A], 4] < [B,A] < B? and [y,z]PP-1/2 ¢
[A, A]? < B?, since A/B is abelian and B is powerfully embedded. Hence

(zB- yB)? = (zyB)’ = (zy)PBP = zPy? B? = (zB)’ . (yB)”,

as required.

For arbitrary m, the mapping 2B — zP" B?" of A/B onto A?" /B*" is
the composition of the homomorphisms 2 BP' — g?™ Brtt of AP /BP onto
AP BT i =0, ,m—1. a

As a special case, we obtain the following theorem.

Theorem 11.15. Let G be a powerful p-group. Then

a) the mapping ¢ — zP induces a homomorphism of the factor-group
P P

GP' |G onto GP' [GP™?, for every i € N;
(b) |G?*/GP*™*" | > |G JGP'?| for all i € N.
Proof. By Theorem 11.10, all of the G?* are powerfully embedded sub-

groups, and all factor-groups G/ G*™*" are abelian. Hence the assertion (a) is
a special case of Lemma 11.14. Then (b) follows immediately from (a). a
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If the equalities hold in 11.15(b), the powerful p-group enjoys properties
even more linear.

Definition 11.16. Suppose that p* is the (minimal) exponent of a powerful
p-group G. If |G?' /G| = |GP™" /GP™**| for all i < € —2, then G is uniformly
powerful.

The following property of such groups makes them similar to abelian ho-
mocyclic groups (see § 1.1).

Theorem 11.17. Suppose that G is a uniformly powerful p-group of (min-
imal) exponent p°. Then

a) the mapping x — zP induces an isomorphism of the factor-grou,

(2) the mapping = — ¥ ind: P group
GP [GP" onto GP7 [GP, for everyi < e —2;

(b) (Cancellation Property) if ' € G¥, for0 < i < j < e, then
r €GP,

Proof. Part (a) follows from Theorem 11.15(a) and Definition 11.16. To
prove (b), choose s such that z € GP*\ G?"*". Then, by (a), 2? € G\ GF""*,
and so on: z#' € G*'" \ GP""™*" aslongas s+i <e Ifs+i< e we have
both z?' € G¥ and z ¢ GP**"*" whence s+i+1 > j = s > j —i; then
r € G < GP'7', as required. If s +¢ > ¢, then s +¢ > j, whence again
s>j—iand z € G <GP as required. a

§ 11.2. Finite p-groups of bounded rank

A finite p-group is said to have sectional rank at most r if each of its abelian
sections has rank at most r; the sectional rank is the least such integer. (It is
often said that a group has rank r if it has rank < r.) It is clear that for finite
abelian groups, the sectional rank coincides with the rank (as defined in §1.1).
By the Burnside Basis Theorem 4.8, a finite p-group has sectional rank r if
and only if all of its subgroups can be generated by r elements. The following
theorem shows that powerful p-groups behave like abelian groups with respect
to the rank.

Theorem 11.18. Suppose that G is a powerful p-group generated by d
elements. Then every subgroup of G can be generated by d elements (that is,
G has sectional rank at most d).

Proof. By Theorem 11.15, each section E; = GP' /GP'"" is an elementary
abelian p-group of rank < d. The E; can be regarded as vector spaces of
dimension < d over F,. For an arbitrary subgroup H < GG, we construct the
generators of H inductively as elements in (HNG?')\ G®"*". Let V; denote the
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factor-group (H N G”")G”"v+1 / GP'*' regarded as a vector subspace of E;.

We choose hy,...,h,, in H such that their images in G/G? form the basis
of Vo = HG?/G?. Note that dim(Eq/Vp) = d — n,.

Suppose that we have constructed elements hy,hs,...,h, € HN G,
Pgats- s hy € HN Gp‘ ey By 419 s B, € HN GP*™" such that the

k—1 k—2
. " » .
images of A} ..., hn1 s R s s P15+ oo 5 By, in Eg_y span Vi_q, and

dim (Eg- l/Vk 1) < d—ng. Let W be the subspace of E; spanned by the images
k

of the h NN hf’:_:l, ..., h2 in Ex. Then dim (Ex/W) < d— ns, because
taking pth powers induces a homomorphlsm of Ex_1/Vik—1 onto Ex/W. Choose
elements hn 41,...,hn,,, € HN G?* (possibly, an empty set) such that their
images form a basis of Vi /W. Then dim (Ey/Vi) = dim (Ex/W)—(ngp1—ni) <
d — ng4q1. The definition is complete.

\ \hl e
.hp

! k-1 k-1 .

\.\h'; ke Vel 1 ons Fr_1
: ;

\-hﬁ”‘....hﬁ’: L W er | | B

The above construction terminates on reaching the identity subgroup G** =
1 where p® is the exponent of G. The last inequality for dimension, d — n, >
dim (E,~1/Ve-1) > 0, implies that n. < d, that is, the total number of the
elements h; constructed is at most d. We prove by induction on the exponent
of G that the h; taken together generate H. For ¢ = 1 the assertion is obvious.
For ¢ > 1, we have H < (hy, ..., hy,) G?*”" by the induction hypothesis. Since
(h1y ..., hn.) < H, it remains to express an arbitrary element of H N G =
(HﬂG’”e_1 )G?°/GP* = V,_, in the h;, which is clearly possible by construction.

a

The following theorem shows that powerful p-groups appear naturally in
the theory of groups of given rank; it is sufficient to have only a bound for the
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ranks of characteristic sections.

Theorem 11.19. If all characteristic subgroups of a finite p-group G can
be generated by r elements, then G contains a characteristic subgroup of (p,r)-
bounded index which is a powerful p-group of rank r.

Proof. Suppose that V is a normal section of G of order p?. Then G acts
on V by conjugation: let ¢ : G — Sy = §,4 be the corresponding homo-
morphism into the symmetric group on p? symbols. There are upper bounds
for the nilpotency class and for the exponent of all p-subgroups of §,4, some
numbers ¢ = ¢(d,p) and p°, e = e(d,p), depending only on p and d. Then
7e+1(G)GP° < Kerp. Note that 4.41(G)G?" is a characteristic subgroup of G
depending only on d and p. The order of G/~.+1(G)G?" is bounded in terms
of ¢, p and r by Lemma 6.12(c), so that the index of v.+1(G)G?" is (p, d,r)-
bounded.

We claim that for d = 2r the subgroup H = 7.41(G)G?" constructed as
above is the required powerful subgroup. In proving that H is powerful, we may
assume HP = 1; then we need to show that [H, H] = 1, that is, H = Z(H).
If H> Z(H), then also (;(H) > Z(H) (see 3.15). The subgroup (3(H) is
characteristic in G and has exponent p (since H has). Hence |(2(H)| < p*,
since the ranks of both Z( H) and (2(H)/Z(H) are at most r by the hypothesis.
Put V = (3( H) in the above construction; then H < Ker ¢, which means that
(2(H) < Z(H), acontradiction. Thus, H is a characteristic powerful subgroup.
Finally, H is generated by r elements by the hypothesis and hence has rank r
by Theorem 11.18. a

Corollary 11.20. Suppose that a finite p-group P admits an automor-
phism ¢ of order p* having ezactly p™ fized points. Then P has a characteristic
powerful subgroup of (p,n, m)-bounded indez.

Proof. If H is any characteristic subgroup of P, then ¢ induces on H/®(H)
an automorphism of order dividing p® which has at most p™ fixed points by
Lemma 2.12. By Corollary 2.7, the rank of H/®(H) is at most mp*. The
result follows by Theorem 11.19. a

Corollary 11.21. If a finite p-group P has sectional rank r and ezpo-
nent p, then the order of P is (r,p,e)-bounded.

Proof. By Theorem 11.19, we may assume that P is powerful. Then the
order of P is the product of the orders of the e elementary abelian factor-groups
PP /PP i=0,... e—1,each of order at most p’. a

Remarks. 11.22. If all normal subgroups of a finite p-group P, for
odd p, can be generated by r elements, then P has a powerful subgroup of
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index < proe27+1) (Exercise 11.7). The bound for the index in Theorem 11.19
can be improved to be of the form p/(").

11.23. There is another way of constructing a Lie ring from a uniformly
powerful p-group, which is better in some respects than the associated Lie
ring, though it works only for this special class of p-groups. To wit, given
the exponent p° of a uniformly powerful p-group P, we choose s = [¢/4] and
consider the factor-group L = P?'/P?** which is an abelian homocyclic group
of exponent p*. We are going to define Lie ring multiplication on the additive
group of L. By Lemma 11.14, the mapping z — z?° induces an isomorphism 9
of L onto sza/ P*. For every z,y € L, we choose some preimages #,§ € P?’
and define the Lie product [z,y] as ([%,9]P?")?” € L, where [£,§]P?"" is
the image of the group commutator [2,§] in P?*"/P?". The Jacobi identity
for this bracket multiplication can be verified by applying the isomorphism
of PP'/P?* and PP’/ P?* induced by z — 27 to the Hall-Witt Identity 3.1
written for the elements of PP as an equality of some elements in P***. Sim-
ilarly, the commutator formulae 1.11 and the isomorphism of P?’/ PP and
PP’/ PP* induced by z — z”° establish the other Lie ring laws on L. Many
important parameters of L as a Lie ring are close to those of the group P.
In particular, if d is the derived length of L, then the derived length of G
is < d + 3. This construction stems from the theory of pro-p-groups, where
it has important applications (see [J. D. Dixon et al., 1991]); it was also used
in the works of A.Shalev [1993a] and Yu. Medvedev [1994a] on almost regular
p-automorphisms of finite p-groups.

11.24. T.Weigel [1994] uses the Baker-Hausdorff Formula to construct
certain Lie rings from uniformly powerful p-groups for p > 3.

Exercises 11

1. Extract an explicit upper bound for the index in Theorem 11.19.

2. Suppose that P is a uniformly powerful p-group P of exponent p°. Prove
that the mapping z — z?° induces an injective mapping of P/P?* onto
PP’/PP"“ for any u and s satisfying u + s < e (although it may not be a
homomorphism).

3. Suppose that H is a powerful subgroup and N is a powerfully embedded
subgroup of a finite p-group G. Prove that NH is powerful.

4. Prove that every finite p-group has a unique maximal powerfully embedded
subgroup. [Hint: Use Theorem 11.4(c).]

5. A finite p-group P is regular, if (ab)? = aPb?cP for some ¢ € [{a,b),(a,b)],
for any a,b € P. Prove that then P? is a powerful p-group, for odd p.
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Suppose that N is a normal subgroup of a finite p-group P. Prove that if
[P, N] is powerfully embedded in N, then [N, P]F = [N?, P].

Prove that if all normal subgroups of a finite p-group P, for odd p, can
be generated by r elements, then P has a characteristic powerful subgroup
of index < p"(o&27+1). [Hints: Let H be the intersection of the kernels of
all homomorphisms of P into UT,(F,) (see Exercise 4.1). Show that H
acts trivially by conjugation on every normal elementary abelian section
of P. Prove that UT,(F,) has a normal series of length < log, r + 1 with
elementary abelian factors; use Remak’s Theorem (Exercise 1.9) to show
that P/H has the same kind of series, derive that |G : H| < p'(logr+1),
Prove that H is powerful: assume H? = 1, and if H # Z(H) choose N <4 G
such that Z(H) < N < H with |N : Z(H)| = p; then N is elementary
abelian by Exercise 1.14, whence [H, N] = 1, a contradiction.]

Prove all results of the chapter for p = 2 (with the adjustments for p = 2
in Definitions 11.1 and 11.5 and with a few possible adjustments in the
statements).

. Prove that a finite p-group P, for odd p, is powerful if and only if P is a

product of r cyclic subgroups, where |P/®(P)| = p".

Prove that a 2-generated finite p-group P, for p odd, is powerful if and only
if P has a cyclic normal subgroup with cyclic factor-group.

By Corollary 11.20, in the proof of Theorem 8.1 the group P can be as-
sumed powerful from the outset. Examine the proof in order to simplify
the argument and/or improve the bound for the index of the subgroup of

class h(p).

Check that the definition of the Lie ring L in Remark 11.23 is correct. Prove
that if the derived length of L is d, then the derived length of G is < d+ 3.
Prove that if ¢ is the nilpotency class of L, then the nilpotency class of G
is < 4c+ 3.

[Yu. Medvedev, 1994a] Use Kreknin’s Theorem 7.19(a) and the Lie ring
construction of Remark 11.23 (and 12) to perform a reduction of the fol-
lowing conjecture to an analogous conjecture on Lie rings whose additive
group is a p-group. Conjecture: if a finite p-group P admits an automor-
phism of order p® with exactly p™ fixed points, then P has a subgroup of
(p, m,n)-bounded index which is soluble of m-bounded derived length.



Chapter 12

Almost regular automorphism of order p™:
almost solubility of p”-bounded derived length

The second of the main results on almost regular p-automorphisms of finite
p-groups is a match to Kreknin’s Theorem on regular automorphisms of Lie
rings. If a finite p-group P admits an automorphism ¢ of order p* with exactly
p™ fixed points, then P contains a subgroup of (p,m,n)-bounded index which
is soluble of (p,n)-bounded derived length (that is, of derived length bounded
in terms of the order of the automorphism only). Kreknin’s Theorem is used
twice in the proof. First it is applied to the associated Lie ring L(P), in
the case where P is uniformly powerful, to prove that P is an extension of
a group of (p,m,n)-bounded nilpotency class by a group of (p,n)-bounded
derived length (this already gives a “weak” bound, in terms of p, m and =, for
the derived length of P in the general case). Then free nilpotent Q-powered
groups and the Mal’cev Correspondence are used to derive a consequence of
Kreknin’s Theorem, with a kind of a “weak” conclusion that depends on the
nilpotency class. Rather miraculously, a combination of two “weak” results
yields the desired “strong” bound, in terms of p® only, for the derived length
of a subgroup of (p,m,n)-bounded index.

By Lemma 2.12 the number of fixed points of ¢ in all (-invariant sections
of P is at most p™; by Corollary 2.7 all these sections have rank at most mp®.
This is why powerful p-groups appear naturally in the proofs.

Throughout the chapter we shall freely use the facts that if M is a char-
acteristic subgroup of N which is a characteristic (normal) subgroup of G,
then M is a characteristic (normal) subgroup of G, and that if U and V are
characteristic (normal) subgroups, then [U, V] and U™ = (u" | u € U) are also
characteristic (normal) subgroups (see § 1.1 and §1.3). The automorphisms of
@-invariant sections induced by ¢ will be denoted by the same letter. We shall
also use without reference Theorem 11.4 stating that taking pth powers and
commutator subgroups produces powerfully embedded subgroups from power-
fully embedded subgroups, and Theorem 11.10 stating that H?’ coincides with
the set of pth powers of elements of a powerful p-group H.

§12.1. Uniformly powerful case

Here Kreknin’s Theorem in its combinatorial form is applied to the asso-
ciated Lie ring of a certain subgroup to prove that the group is an extension
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of a group of (p, m, n)-bounded nilpotency class by a group of (p,n)-bounded
derived length. Remarks at the end of the section explain how this gives a
“weak” bound, in terms of p, m and n, for the derived length in the general
case. Recall that k(s) is Kreknin’s function from §7.1.

Theorem 12.1. Suppose that a uniformly powerful p-group P admits an
automorphism ¢ of order p* with ezactly p™ fized points. Then the k(p™)th
derived subgroup P*®") is nilpotent of (p,m,n)-bounded class.

Proof. We fix the notation k = k(p™) for the value of Kreknin’s function.
Fixing some s € N, we consider the ¢-invariant subgroup P?’, which is also
a uniformly powerful p-group by Theorem 11.15. We denote by the same
letter ¢ the induced automorphism of the associated Lie ring L = L(PP").
An application of Kreknin’s Theorem in the combinatorial form 7.19(a) gives
(p"L)*) C ;4{CL(p)). By Lemma 2.12 and by Lagrange’s Theorem, we have
p™Cr(p) = 0, and hence p™ i3(Cr(¢)) = ia(p™Cr(¢)) = 0 (just as in the proof
of Theorem 8.1). It follows that

pm+n2"L(k) — pm(an)(k) g pm 1d(CL(<P)) =0.

In the language of the group PP’ this implies that

s Pm+"2k s
((Pp )(k)) < Yo (P7).

Indeed, (PP*)(®) < 4,x(P?’) and the image of (PP)(®) in ~u(PP") /ypx 41 (PP")
is equal to L) N 7,k (P?*)/¥ax4, (PP") by Lemma 6.7(a). By the Interchanging
Corollary 11.13 for powerfully embedded subgroups, the above inclusion can
be rewritten as

(PO < (PP < PP (122)

The idea is to use the extra summand s in the exponent on the right. If

p° is the exponent of P, we shall choose s so that the ratio e/s is (p,m,n)-
bounded. Using the Cancellation Property 11.17(b), we shall “cancel” the
summand s2* in the exponents: then P*) will be “almost” contained in P?’.
By the Interchanging Corollary 11.13, 7,(P?’) = 7,(P)?" < PP”; so the result
will follow since ¢/s is (p, m,n)-bounded. We have yet to make this plan work.
So now we choose s. Let p° be the (minimal) exponent of P. We put

s = [e/(2F 4+ 1)], that is, s is the maximal integer satisfying s2* + s < e.
To be able to apply the Cancellation Property to (12.2) we must have s2* +
m + n2* < 52 4+ s < e. The second inequality holds by the choice of s. If
525 4 m 4+ n2F > s2% 45, then m 4+ n2*F > s = [¢/(2* + 1)), which implies that e
is bounded in terms of p, m and n (recall that k£ = k(p")). Then the nilpotency
class of P, which is at most ¢ by Theorem 11.10(c), is also (p,m,n)-bounded



142 12. Almost regular automorphism of order p*

and the result follows. Thus, we may assume that s2% + m + n2* < s2* 4 s.
Then we can apply the Cancellation Property 11.17(b) to (12.2) to get rid of
the summand s2F: R
m+n2

(PR < PP, (12.3)

We may also assume that s(2* +2) > (s + 1)(2F + 1) & [e/(2F +1)] =
s > 2F 4+ 1. Otherwise e and hence the nilpotency class of P are (p,m,n)-
bounded, and the result follows. Thus, we have s(2*+2) > (s+1)(2¥4+1) > ¢
by the choice of s. Now we take 45:,, of both sides of (12.3) and apply the
Interchanging Corollary 11.13. On the right we shall have

s(2%+2)

Yor42(PP) = Yorqa(P)P <P =1,

since (2% + 2) > e. Hence the left-hand side will be trivial as well:

p(m+n2k)(2k+2)

(72k+2(P(k))) = Yak42 ((P(k))pm+"2k> =L

This means that y,x4,(P®) has (p,m,n)-bounded exponent (recall that k =
k(p™)). Hence the order of this powerful subgroup generated by mp™ elements
is also (p, m, n)-bounded by Corollary 11.21. By Corollary 3.15, we have strict
inequalities Ypx o4141(P®) < Yorp24e(P™) unless yprpp,,(PH)) = 1. As a
result, y;x 54, (P*®)) = 1 for some (p,m, n)-bounded number r. Thus, P*) is
nilpotent of (p,m, n)-bounded class. a

Remark 12.4. Theorem 12.1 already gives a weak bound, in terms of
p, m and n, for the derived length of an arbitrary finite p-group P admit-
ting an automorphism of order p® with exactly p™ fixed points. Indeed, by
Corollary 11.20, P can be assumed to be powerful. Consider the inequalities

a1 ¢+1

|P/P?|> ... > |P? /PP > | PP P > L

A

which hold according to Theorem 11.15. Since all factor-groups P?' / PP are
abelian of exponent p and the ranks are (p,m,n)-bounded, there can only be
a (p,m, n)-bounded number of strict inequalities in this chain. Every segment
with equalities corresponds to a uniformly powerful section, and all of them
are soluble of (p, m, n)-bounded derived length by Theorem 12.1. Hence P is
soluble of (p, m, n)-bounded derived length.

Such a (p,m,n)-bound for the derived length was obtained by A.Shalev
[1993a). In his work, Kreknin’s Theorem was applied to the Lie ring con-
structed from a uniformly powerful p-group in another way outlined in Re-
mark 11.23. Although we used here the usual associated Lie ring, many ideas
of the proof stem from A. Shalev’s paper. Since every element of a group acts
as an inner automorphism, the following interesting fact follows.
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Corollary 12.5. [A. Shalev, 1993a] The derived length of a finite p-group
is bounded in terms of the minimal order of the centralizer of its element. O

In fact, the proof of Theorem 12.1 above also gives a strong bound, in
terms of p™ only, for the derived length of a subgroup of (p, m,n)-bounded
index in this special case of a uniformly powerful p-group (Exercise 12.2). But
the number of uniformly powerful factors in the general situation may not be

(p,n)-bounded.

§ 12.2. Application of the Mal’cev Correspondence

We use the Mal’cev Correspondence to derive a consequence of Kreknin’s
Theorem for arbitrary nilpotent groups with an automorphism of finite order
[E. 1. Khukhro, 1993a]. Recall that k(n) denotes Kreknin’s function.

Theorem 12.6. Suppose that a nilpotent group G of class ¢ admits an
automorphism ¢ of finite order t. Then, for some (¢, t)-bounded number N =
N(ec,t), the k(t)th derived subgroup of the subgroup generated by all Nth pow-
ers is contained in the normal closure of the centralizer of ¢ in G, that is,

(GV)HO < (Ca(9)9).

Proof. We fix the notation k = k(t) for the value of Kreknin’s function.

Recall that the groups admitting the action of (¢} as a group of auto-
morphisms (not necessarily faithful) can be regarded as algebraic systems
with additional unary operator ¢, the so-called (¢)-groups (Example 1.39).
We start with a free nilpotent {¢)-group F' of class c freely generated by
Z1,...,Zqx as a (p)-group. As an abstract group F is free nilpotent of class
c with free generators y;; = z¥°, i =1,...,2%, j=0,1,...,t—1,and ¢ is
an automorphism of F' which permutes the free generators in a natural way:
yh = (:z:‘f’)v’ = z‘f’“ = Yij4+1, Where j + 1 is taken mod ¢.

In accordance with Theorem 9.20, we form v/F, the Q-powered hull of
F (a divisible torsion-free nilpotent group of class ¢ consisting of the roots
of elements of F), and extend ¢ to an automorphism of v/F (denoted by
the same letter). Note that /F is a free nilpotent Q-powered group on free
generators y;;. Let L = L sz be the nilpotent Lie Q-algebra which is in the
Mal’cev Correspondence 10.11 with /F, with the same underlying set L =
VF. By Theorem 10.13, ¢ can be regarded as an automorphism of L acting
on the same set in the same way.

By Kreknin’s Theorem in the combinatorial form 7.19(a), we have

L) C 4 (Cele)) (12.7)

(here |¢|L = L since L is a Q-algebra). Using Theorem 10.13, we trans-
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late this inclusion into the group language. Since L/L(® is soluble of derived
length k, the same subset L) is a normal Q-powered subgroup of v/F with
soluble factor-group of derived length k; hence vVF*) C L*). On the other

side, we have, of course, C /5(¢) = Cr(y) and ;a(Cr(¢)) ,/(C\/—(go >
since this is the smallest ideal of L (respectively, the smallest normal Q-
powered subgroup of \/F) containing Cr(p) = C/r(¢). By Lemma 3.17,

,/(Cﬁ(<p)ﬁ> = <Cﬁ(<p)ﬁ> (the abstract normal closure), since C /z(¢) is

a divisible subgroup (being equal to the Q-subalgebra Cr(¢)). As a result,
(12.7) implies

F® < VF® € L® € 4(Cr(e)) = (Cyrle)T).

However, the right-hand side is still larger than desired. In order to qualify for
an embeddmg into <C 7o) > we shall take the kth derived subgroup of some
smaller subgroup F'N rather than of F'.

One of the consequences of the inclusion obtained is the following equality:

(2, .. o) =& (12.8)

where on the left is the value of the identity of solubility of derived length &
on the z; = yio, and on the right ¢, € C/5(¢) and g, € V'F for all a. Fixing
one such equation and the expressions for the ¢, and g, as Q-powered group
words in the y;; = z?’ | we may regard (12.8) as a law in the free nilpotent
Q-powered group V'F, a law which depends only on ¢ and e.

To make a proper use of powers, we need the following fact.

Lemma 12.9. For any w = w(y;;) € V'F, regarded as a Q-powered group
word in the y;;, there is s € N such that © = w(yy;), the value of the same
word on the yf;, belongs to F. If w € C p(p), then @ € Cp(p). The same
inclusions hold for w(y;7), for any ¢ € N.

Proof. First, we prove the existence of s such that @ € F and all multiples
of s have this property. Induction on ¢, the nilpotency class. If ¢ = 1, then
w(yy;) = w* € F for some s € N by the definition of VF; then also w(yy]) =

w*? € F for any ¢ € N. Let ¢ > 1. By Lemma 10.1, \/7.(F) = 7.(V/F) and
VF[y/7.(F) can be identified with \/F/~.(F). By the induction hypothesis,
there is s; € N such that the image of w(y;}) belongs to F\/v.(F)/\/7<(F).
Hence w(y;}) = h(yi;) - 2(vi;) where h(yi;) € F and z = z(yi;) € \/7.(F).
Here h(y;;) is an abstract group word in the y;; (with exponents in Z), and

z(yi;) is a product of Q-powers of commutators of weight ¢ in the y;;. By
Lemma 6.13 applied to these commutators, we get z(y%) = z** for any u € N.
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Since 2*° € F for some v € N, we obtain w(y}*) = h(y) -z € F. (If
two Q-powered group words in free generators are equal, then the equality
remains valid on replacing the free generators by any other elements, such a
replacing being a homomorphism of the free group; here we replaced the y;;
by the y};.) Thus, s = vs; is the required number. The same inclusion holds
for any multiple of s: w(y;7™) = h(yi]) - 2" € F.

Now suppose that w € C z(¢); we use the Mal’cev Correspondence to
show that then @ € Cr(y). By Theorem 10.13(g), the Lie Q-algebra L = L /5
that is in the Mal’cev Correspondence with \/F is free nilpotent of class ¢ with
free generators y;;; hence L is homogeneous with respect to the generators y;;
(Corollary 5.40). Since the automorphism ¢ permutes the generators y;;, the
homogeneous components of L are ¢-invariant and Cr(¢) is a homogeneous
subalgebra. If w € C /5(¢) = CL(p), then w = w1+ - - +w,, where wg € Cr(yp)
is a homogeneous Lie polynomial of weight d in the y;;, foreach d=1, ..., ¢
By Theorem 10.13(f), the homomorphism of the Q-powered group /F that
extends the mapping yi;; — y; (for all i,j) is also the homomorphism of L
extending the mapping yi; — syi;. Therefore

@ = w(sy;j) = swy + s"wz + - -+ + s°w. € Ci(p) = Oyp(p),

since s?wy € Cr(¢p) for each d. Thus, if s is such that @ € F, then & €
C/r(¢) N F = Cr(p), as required. The same calculation is valid for any
multiple of s. ]

Note that the least s satisfying Lemma 12.9 depends only on w, ¢ and ¢.

Returning to the proof of Theorem 12.6, we apply Lemma 12.9 to all el-
ements g,, ¢, in the right-hand side of (12.8) regarded as Q-powered group
words in the y;;. Let Ny be the least common multiple of the corresponding
minimal numbers given by Lemma 12.9 for all ¢,, go. Substituting the yf}" in
place of the y;; in (12.8), we obtain

5k($11v17"' azlz\{:) :EIE1 "'ar?ra (1210)

where ¢, € Cr(p) and g, € F for all a. This equation may be regarded as a
law in the y;; that holds in the free nilpotent group F' and depends only on ¢
and c¢.

The right-hand side of (12.10) is an element of <Cp(<p)F>. However, al-
though the kth derived subgroup is generated by the values of the commuta-
tor &, and FM is generated by the Njth, the subgroup (F™)*) may not be
generated by the values of §; only on these powers (but on all their products).
We use Lemma 6.15 of A. I Mal’cev to overcome this difficulty. Put N = Ny;
by Lemma 6.15, every product of Nth powers of elements in a nilpotent group
of class ¢ is an Nyth power.
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Now we prove the theorem for a free nilpotent (¢)-group Fy (with arbitrar-
ily many generators). The subgroup (F{¥)*) is generated by the values of &
on the products of Nth powers of elements of F}. Since every such product
is an N th power, the subgroup (FN)( is contained in the subgroup gener-
ated by all elements of the form 5k(ffv1, . ,le\,fl), fi € Fy. For any f; € F,
the homomorphism of the {p)-group F into F; which extends the mapping
z; = fi, 1 = 1,2,...,2% (or, as a homomorphism of abstract groups, the
mapping y;; — f{ ), obviously maps Cr(p) into Cp, (¢). Applying this homo-
morphism to (12.10) we see that & (/... ,fg‘), the image of the left-hand
side, is contained in <CF1 (<p)F1>. It follows that

(FMY® < (Cr(p)7).

Now let G be an arbitrary group satisfying the hypothesis of the theorem.
There is a homomorphism 9 of a suitable free nilpotent {()-group F; onto G.

Again, <Cp1(<p)F1 >19 < <C(,'(<p)G>. Using the result for F), we obtain finally

(@V)® = (FN®)? < (Cr()7)’ < {(Cale)®),

as required. a

§12.3. Almost solubility of p™”-bounded derived length

First, we prove that if P is a powerful p-group admitting an automorphism
of order p* with p™ fixed points, then P*®") is nilpotent of (p, m,n)-bounded
class. The proof is in the multiple application of Theorem 12.1 using the
Interchanging Lemma 11.12. Then the result of § 12.2 is applied to P*®™) to
prove that P has a subgroup of (p, m, n)-bounded index and of derived length
2k(p™). The main result of the chapter follows, since in the general situation
the group contains a powerful subgroup of (p,m,n)-bounded index.

Theorem 12.11. Suppose that a powerful finite p-group P admits an
automorphism ¢ of order p* with ezactly p™ fized points. Then the k(p™)th
derived subgroup P*®") is nilpotent of (p,m,n)-bounded class.

Proof. We fix the notation k = k(p™) for the value of Kreknin’s function.
As in Remark 12.4, we consider the inequalities

s+1 s+1

|P/PP|>...> |PP /PP > PP PP > L

’

which hold according to Theorem 11.15. Since the factor-groups P?'/PP"*" are
elementary abelian, and the ranks are (p,m,n)-bounded, there can only be a
(p, m,n)-bounded number of strict inequalities in this chain. Every segment
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with equalities corresponds to a uniformly powerful section of P; hence we
obtain a series of (p,m,n)-bounded length with uniformly powerful factors:

P>P > PS> P s (12.12)
rank < mp" p
pr
P
o pr
Pp.', / priett
uniformly
powerful prie+
L

We prove the theorem by induction on the length { of this series. The basis of
induction, when P itself is uniformly powerful, is formed by Theorem 12.1. To
lighten notation, we denote r =1;_;, so that P?" is the last non-trivial term in
(12.12), a uniformly powerful subgroup such that the factor-group P/PP" has
a series of length ! — 1 with uniformly powerful factors.

By Theorem 12.1,

[pr’ (Ppr)(k)a' - a(Ppr)(k)] =1,
for some (p, m,n)-bounded number u (here [P?", (PP )¥)] < (PP")(®) so u—1

is the nilpotency class of (P?")(")). A repeated application of the Interchanging
Lemma 11.12 transforms this equation to the form

r(142%u)

[P, P® .  POP 1.
N

Another application of the Interchanging Lemma 11.12 gives

r(142%4)

(PP , PO pE] =1, (12.13)
N

3

On the other hand, by the induction hypothesis,
[P, P® ... PW] < pr
N —

c
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for some (p, m, n)-bounded number ¢ = ¢(p, m,n,l —1) (here [P, P¥)] < P(¥)
so ¢ — 1 is the nilpotency class of (P/P?")(*)). Taking repeatedly the mutual
commutator subgroup with P(*) we obtain, using the Interchanging Lemma,

[P, P® ... PR < [P PR PR
N e N e
2¢c c
= [P, P, PO < pr
N e

and so on. By an obvious induction, we have
(P, P®) .. P®]<pr
[ ——
for all 7 € N. In particular,

r(142% )

[P, P® ... P®]< PP (12.14)
N

for the (p, m, n)-bounded number v = ¢(1 + 2*u).
It remains to combine (12.14) with (12.13) to obtain

T ku
(P, P®) ... p® p®  pE] < [(prtTY p) o pR) =,

v 3 3

This implies that P(*) is nilpotent of (p, m,n)-bounded class v + u. a

Now we prove the main result of this chapter, giving a “strong” bound,
in terms of the order of the automorphism only, for the derived length of a
subgroup of bounded index in the general situation [E.I. Khukhro, 1993a).

Theorem 12.15. If a finite p-group P admits an automorphism ¢ of order
p" with ezactly p™ fized points, then P contains a characteristic subgroup of
(p, m, n)-bounded index which is soluble of (p,n)-bounded derived length 2k(p™),
where k(p™) is the value of Kreknin’s function.

Proof. Recall the notation fixed, k = k(p™). By Corollary 11.20, P has
a powerful characteristic subgroup of (p,m,n)-bounded index; so we may as-
sume P to be powerful from the outset. By Theorem 12.11, P*) is nilpotent
of (p,m,n)-bounded class s, say. By Theorem 12.6 applied to P*) and its
automorphism ¢, we have

(P9 < (Crat)™), (12.16)

for some (p, m,n)-bounded number p* = N(s, p*).
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The subgroup <C oo (@) U‘)> is generated by the elements conjugate to
elements in Cpx)(¢). All elements of Cpx)(¢) < Cp(¢) have order at most p™
by Lagrange’s Theorem; hence <Cp(k)((p)P(k)>

dividing p™. Since <Cp(k)((p)P(k)> < P® is nilpotent of class < s, the exponent

of <Cp(k)((p)P(k)> divides the (p, m, n)-bounded number p™* by Lemma 6.12.
As a result, it follows from (12.16) that

() )™ < (o)™ =1

By the Interchanging Corollary 11.13, this implies that

is generated by elements of order

pms

(PP°)CR < (((p(k))p“’)(k)> =1,

for some (p, m,n)-bounded number z. Both the rank and the exponent of
the factor-group P/P? are (p,m,n)-bounded; hence, by Corollary 11.21, the
order of P/P?” is also (p,m,n)-bounded. Thus, PP* is the required charac-
teristic subgroup of (p, m,n)-bounded index which is soluble of derived length
< 2k(p™). a

Remarks. 12.17. In the special case of Theorem 12.15 where |p| = 4
(p = 2, n = 2), a stronger result was obtained by N.Yu.Makarenko [1993]:
then P has a subgroup of m-bounded index, whose derived subgroup is nilpo-
tent of class at most 3. This matches the stronger Lie ring result for regular
automorphism of order 4, see Exercise 7.4

12.18. In the case of n = 1, when a finite p-group P admits an automor-
phism of order p™ with exactly p fixed points, S. McKay [1987] and, indepen-
dently, I. Kiming [1988], proved that P has a subgroup of (p,n)-bounded index
which is nilpotent of class at most 2 (abelian, if p = 2). We shall prove this
theorem in Chapter 13.

12.19. This result gives rise to the following Conjecture: There exists a
function g(m), depending only on m, such that a finite p-group admitting
an automorphism of order p™ with exactly p™ fixed points has a subgroup of
(p, m,n)-bounded index which is soluble of derived length at most g(m). Some
evidence in the positive direction appears in Yu. Medvedev [1994a,b], where
this conjecture is proved for n = 1 (see Chapter 14) and, in the general case,
is reduced to a corresponding Lie ring problem using the Lie ring construction
outlined in Remark 11.23.
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Exercises 12

1. For P as in Theorem 12.1, prove that P(*+1) has (p, m, n)-bounded order.
[Hint: Use the fact that y,x,,(P*)) has (p,m,n)-bounded order.]

2. Use 1 to deduce that, for P as in Theorem 12.1, Cp(P(?+1) is a subgroup
of (p, m,n)-bounded index in P which is soluble of derived length at most
2k + 2. [Hint: The factor-group P/Cp(P(%*+1)) embeds in the automor-
phism group of P(2+1) and (Cp(PZ+1))(Z+1) < Op(P(2k+1)) n p(2k+1) <
Z(P(2k+1)).]

3. Prove a version of Theorem 12.6 for |p| = 4: if a nilpotent group G of class
¢ admits an automorphism ¢ of order 4, then 3(12(GV)) < <C(,'(<p)G>, for
some ¢-bounded number N = N(c). [Hint: See Exercises 7.3 and 7.4.]

4. Write down an explicit bound for the index of the subgroup in the conclu-
sion of Theorem 12.15.



Chapter 13
p-Automorphisms with p fixed points

In the extreme case, where a p-automorphism of a finite p-group has only
p fixed points, the result is extremely strong.

Theorem 13.1. If a finite p-group P admits an automorphism ¢ of or-
der p™ with ezactly p fized points, then P has a subgroup of (p,n)-bounded
indez which is nilpotent of class at most 2 (abelian, if p=2).

For || = p this was proved by C. R. Leedham-Green and S. McKay [1976]
and by R.Shepherd [1971]; in the general case it was proved by S.McKay
[1987] and by I. Kiming [1988].

We give a proof which is different from the original ones; although with pos-
sibly worse bounds for the index of the subgroup, our proof is more Lie ring
oriented, making use of Higman's and Kreknin’s Theorems from Chapter 7,
the theory of powerful p-groups from Chapter 11, and the Lazard Correspon-
dence from Chapter 10. As in Chapters 8 and 12, bounds for the ranks of
abelian sections allow us to assume P to be powerful. Using a generalization
of Maschke's Theorem, one can show that every ¢-invariant abelian section is
a kind of “almost one-dimensional” Z (¢)-module. This information is used in
a reduction to the case where P is uniformly powerful, and later in the proof
of a Lie ring theorem. An application of Higman’s Theorem to a subring of
the associated Lie ring L(P) allows us to assume P to be nilpotent of class
h(p), the value of Higman’s function. This already finishes the proof in the
cases of p =2 and p = 3, since h(2) = 1 and A(3) = 2. For p > 3, induction
on the nilpotency class reduces the proof to the case where P is nilpotent of
class 3; then the Lazard Correspondence provides a final reduction to Lie rings.
Using Kreknin’s and Higman’s Theorems, in §13.3 we prove independently a
Lie ring analogue of Theorem 13.1, which is interesting in its own right. There
we adopt the approach of Yu.Medvedev [1994b], defining a new “lifted” Lie
ring multiplication. (This construction was anticipated in [A.Shalev, 1994]
and [A.Shalev and E.I. Zelmanov, 1992], where a new Lie algebra is defined
over the polynomial ring F,[7], with multiplication by 7 defined via taking pth
powers in the group.)



152 13. p-Automorphisms with p fixed points

§13.1. Abelian p-groups

We shall be able to control the behaviour of certain sections of an arbitrary
(powerful) p-group via its abelian sections. The information about abelian
groups will also be used later for the additive group of a Lie ring with a p-
automorphism.

Throughout this section, U is an abelian p-group and ¢ is an automor-
phism of U of order p*. We use additive notation regarding U as a right
Homgz U-module and ¢ as an element of Homgz U. The following lemma is a
generalization of Maschke’s Theorem on complete reducibility of representa-
tions; it will also be used in a more general situation in Chapter 14.

Lemma 13.2. [fU = V@Y where V is a p-invariant subgroup, then there
is a p-invariant subgroup W such that p*U <V + W and p»(VN W) = 0.

Proof. Let m denote the projection of U onto V with respect to Y, that is,
(v+y)r =vforv eV, y €Y. We define another mapping of U in itself: for
z €U let

zrt = Z zgmg™l.
9€(¢)

Clearly, 7* € HomU as a linear combination of the grg™! € HomU. Since
V is g-invariant for any g € () and «|y is identical on V, we have Unr* < V
and vgrg™! = v for v € V, so that 7*|y = p”ly (recall that p* = |(¢}]).
We have zr*n* = p"zr* for any ¢ € U since zn* € V. This implies that
p"U <V + Kern*, since (p"z — zn*)r* = 0, that is, p"z — zn* € Kerr* for
every z € U. If £ € V N Kern*, then both zr* = p"z and z7* = 0, so that
p"(VNKern*) = 0. We claim that W = Ker n* is the required subgroup of U.
It remains only to show that W is ¢-invariant. This follows from the fact that
7* was designed to commute with ¢: for any z € U we have

Tt = Z rpgrg™! = ( Z :z:<pg7rg‘1<p‘1) p= (Z zhrh‘l) p =z,

g€{o) 9E() he(e)

where h = @g runs over {p) together with g. Hence if zz* = 0, then zpr* =
zm*p = 0 too. g

From now on, U is a homocyclic abelian group of exponent p* (that is, U is
a direct sum of cyclic groups of order p*) and |Cy(¢)| = p. By Lemma 2.12,
the number of fixed points of ¢ is at most p in all p-invariant sections, and
by Corollary 2.7 the rank of U (and hence of all of its sections) is at most p™.
We begin to describe in what sense U is essentially a one-dimensional Z {¢)-
module.
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Lemma 13.3. (a) Suppose that V is a p-invariant homocyclic subgroup
of U of the same exponent p°. Ife > 2n+ 1, then V =U.

(b) Suppose that T is a p-invariant subgroup of U. Then there is an integer
s > 0 such that p**?*"U < T < p°U.

Proof. (a) Suppose that V # U. By Lemma 1.6(a), V is a direct summand
of U. By Lemma 13.2, there is a @-invariant subgroup W such that p"U <
V + W and p*(V N W) = 0. Let a bar denote the image in U/(V N W); then
(V+W)/(VNW) =V ®W (see 1.4). Since the exponent of U and V is at
least p?"*! by the hypothesis, the exponent of W is at least p"*! (for otherwise
p™U < p*V + p"W = p"V which is impossible if V # U). Therefore both V
and W are non-trivial groups. Each of the non-trivial ¢-invariant p-subgroups
V and W has at least p fixed points of ¢ (see 2.8), whence ¢ has at least p?
fixed points on V @& W. This is a contradiction to the fact that ¢ has at most
p fixed points on every section of U by Lemma 2.12.

(b) Taking pth powers induces isomorphisms of the factor-groups p'U/pt'U,
and pth powers of elements in T are again in T'. Therefore we have the following
inequalities:

IT/(T npU)| < (T NpU)/(TNPV)| <...

ST N ) (T N pU)| = |T N p ')

Since the ranks are at most p”, there can be at most p™ strict inequalities in this
chain. If there are no steps of height > p** in this ladder before TN p'U = p'U
for the first time, that is, if each segment of equalities has length < 2n—1, with
a possible exception for the last segment of equalities satisfying TNp'U = p'U,
then the result follows, with s maximal such that T < p*U.

rank < p* s

if all < 2n

then d < 2np" . d

T
-|_| p*+iU

Suppose the opposite; then there is a section U = p*U/ p“'*‘"U_of exponent
p* > p¥t! such that T N pU is a proper homocyclic subgroup of U of the same
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exponent p’, where the bar denotes the image in p*U/p*t*U. This, however,
contradicts (a). a

Now we show that ¢ as a linear transformation of U “almost” satisfies
an irreducible cyclotomic polynomial. It will follow that some power of ¢ is
“almost” an automorphism of order p with (p,n)-bounded number of fixed
points.

As a linear transformation of U, ¢ satisfies the polynomial z?" — 1 since
¢?" = 1. The polynomial 27" — 1 decomposes as the product of irreducible
(cyclotomic) polynomials in Z[z]:

" — 1= go(z)g1(z) - ga(2),

where go(z) = z—1 and deg g; = p'—p'~ for i > 1; the g;(z) are also irreducible
in Q[z] by Gauss’s Lemma. In fact, gi(z) = 2?' ' 4.+ 2% 4+ 277" +1 for
i > 1. The roots of g;(z) are precisely all primitive p‘th roots of 1, and ?—1=
go(z)g1(z) - - - gi(z) for each I € N. (See, for example, [B.L.van der Waerden,
1970].)

The greatest common divisor in Q[z] of the n + 1 integral polynomials
di(z) = (2¥" — 1)/gi(z), 1 =0, 1, ..., n, is 1. Hence there exist polynomials
ui(z) € Q[z] such that

iu,(z)g,(z) =1.

Choosing the u;(z) so that the greatest power p* of p dividing the denomi-
nators of all coefficients of all of the u;(z) is minimal possible, we see that a
depends only on p and n and hence is a (p,n)-bounded number. Then the
u;(z) = p®ui(z) can be regarded as polynomials over Z/p°Z (recall that p° is
the exponent of U), and we have

Y Uil(p)die) = plu.
=0
Applying both sides to U, we obtain the decomposition
S U; = pU, where U; = Uti;(¢)di(e). (13.4)

Each U; is a Z (¢)-submodule, since ¢ commutes with the polynomials in ¢.
For each ¢, the restriction |y, satisfies the polynomial g;(z):

Uigi(p) = Utii(@)di(@)gi(p) = Utis()(¢” — 1v) = 0. (13.5)

In particular, Us(p — 1) = 0, that is, Uy C Cu(yp).
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By Lemma 13.3(b), each U; satisfies p**+2"?" U < U; < p* U for some s;. In
view of (13.4), we must have p*U < p% U for some j. If the exponent p® of U
is large enough, that is, if @ < ¢, then a > s; so that

Pty < U (13.6)

(It can be shown that such j is unique if e is large enough, but we do not
need this fact.) For large e, we must have j # 0, since otherwise p*+2"?"+1[J <
pUs < pCu(yp) = 0 which implies that e < a + 2np™ + 1. We assume that
e > a+ 2np” + 2 for what follows. Thus, j # 0, and we can define ¢ = ?’~
which acts on U; as an automorphism of order p. Indeed, by (13.5), ¢|y;
satisfies the polynomial g;(z) which divides 2’ — 1, so that » = ¥ acts
trivially on U;.

Lemma 13.7. The number of fired points of 9 on U is (p, n)-bounded.

Proof. The restriction ¢|¢,(y) satisfies the polynomial

2" — 1 = go(x)g1(2) -+ - g5-1(2)-

Since this polynomial is coprime with g;(z), there exist polynomials u(z),
v(z) € Q[z] such that 1 = (' — l)u(z) + g;(z)v(z). As above, there is
a (p,n)-bounded number b such that p does not divide the denominators of
all coefficients of %(z) = p*u(z) and ¥(z) = pPv(z), which may therefore be
regarded as polynomials over Z/p°Z. Then

Plu = (" — Lu)i(y) + g;(¢)5(p).

We apply both sides to p®*2"?" Cy(¢), which is contained in U; by (13.6), and
use (13.5):

PPt Oy ()
P Cu (D)@ = L)) + P Cu(¥)gi(#)b(p)
< Co(P)(P - o) i) + Usgi() 3(¢) = 0.
So the exponent of Cy(v) is (p,n)-bounded, whence the order of Cy(3) is
(p,n)-bounded too, since the rank is at most p*. O
§ 13.2. Reduction to Lie rings

Now we begin the reductions in the proof of Theorem 13.1. For the rest of
the section, we fix the notation P and ¢ for a finite p-group and its automor-
phism of order p™ with exactly p fixed points. By Theorem 12.15, P has a char-
acteristic subgroup of (p,n)-bounded index which is soluble of (p, n)-bounded
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derived length. Thus, we may assume that P is soluble of (p,n)-bounded de-
rived length from the outset:

P@ =1, (13.8)

for some (p,n)-bounded number g. By Corollary 11.20, P has a powerful
characteristic subgroup of (p,n)-bounded index and of rank < p*. Thus, we
may assume P to be powerful from the outset. Then every section of P has
rank < p*, and if the exponent of such a section is (p,n)-bounded, then its
order is (p,n)-bounded too (Corollary 11.21). For example, if s is a (p,n)-
bounded number, then PP’ is a subgroup of (p,n)-bounded index in P. Let p*
be the (minimal) exponent of P. We may assume that e is large enough, for
if e is (p, n)-bounded, the order of P is (p,n)-bounded too.

We shall use without reference Theorem 11.4 stating that taking pth powers
and commutator subgroups produces powerfully embedded subgroups from
powerfully embedded subgroups, Theorem 11.10 stating that H? coincides
with the set of p’th powers of elements of a powerful p-group H, and the
fact that ¢ has at most p fixed points on every g-invariant section of P (by
Lemma 2.12).

Our next reduction is to uniformly powerful groups. As in the proof of
Theorem 12.11, we consider the chain of inequalities (which hold by Theo-
rem 11.15) ,

|P/P?| > |P?/PP|>...> |P" /PP | > ...

where each factor-group P /PP is elementary abelian. Since the ranks are
at most p”, there can be at most p* strict inequalities in this chain. Every
segment with equalities gives rise to a uniformly powerful section of P; hence
we obtain a series of P of length at most p® with uniformly powerful factors:

’

P>P" > PP > > PP s (13.9)

We shall prove that there is at most one factor in (13.9) of sufficiently large
exponent; then all other factors are of (p,n)-bounded exponent and hence
of (p,n)-bounded order. Naturally, the single large factor will determine the
structure of “most of P”. Abelian sections will be used for that, basing on
the following simple lemma. Recall that [a/b] denotes the integral part of the
ratio a/b; note that b-[a/b] > a— b+ 1 for a,b€ N.

Lemma 18.10. For every powerful p-group H of exponent p*, the subgroup
H?"™ is abelian.

Proof. Indeed, [H*"" H**/"] < [H, H]P"™ < H?" =1 by the Interchang-
ing Lemma 11.12 and by Theorem 11.10. g

The proof of the following lemma relies on Lemma 13.3 on abelian groups;
we take the abelian “lower halves” of the sections.
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Lemma 13.11. There is at most one factor of exponent > p*™t! in the
series (13.9).

Proof. Suppose that the two factors PP /PP"*" and P?*/PP'** in (13.9)
have exponents p*,pt > p'**! respectively, for some r < s. Then the sub-
groups consisting of all elements of order < p?**! in these factors, namely
U = (P [PP"H "™ and T = (PP"/PP"* )P ™" are abelian by Lem-
ma 13.10 and homocyclic by Theorem 11.17(b). By Lemma 11.14, the map-
ping z — z?**"™ ™ induces a homomorphism ¥ of U onto 7. The kernel
V = Kerd is non-trivial since the rank of U is larger than the rank of T. By
Lemma 1.6(b), V is a proper direct summand of U. Since ¢ commutes with
taking powers, V is ¢-invariant as the kernel of J. This, however, contradicts
Lemma 13.3(a). O

Since the length of the series (13.9) is (p, n)-bounded, Lemma 13.11 means
that there are (p,n)-bounded numbers a and b such that U = PP*/PP"™" is a
uniformly powerful section (p° is the exponent of P). Suppose that U has a
subgroup of (p,n)-bounded index which is nilpotent of class at most 2. Then
43(U?") = 1 for some (p, n)-bounded number ¢ so that y3(P?***)?" = 1. By the

Interchanging Corollary 11.13, we then have
73(Ppa+c+[b/31+l ) S 73(Ppa+c )pb -1

so that P? is a subgroup of (p, n)-bounded index which is nilpotent of
class at most 2. (Analogously, if y2(U?°) = 1 for some (p, n)-bounded number c,
then 72(P”“+°+[b/21+1) =1, so that PP**“*™*! i an abelian subgroup of (p,n)-
bounded index; this will be needed in the case p = 2.) Therefore, we may
assume P to be uniformly powerful from the outset. (The order of ¢ might
have changed, only to become less; the number of fixed points remains p. We
renew the same notation, including p for the exponent of P.)

Our next step is to produce an automorphism of the associated Lie ring
L(P), an automorphism “almost” of order p with fixed-point subring of (p, n)-
bounded exponent (as an additive subgroup). But first we use Lemma 13.3(a)
to squeeze an arbitrary ¢-invariant subgroup into a (p,n)-bounded layer.

)
at+ct[b/3]+1

Lemma 13.12. Suppose that T is a p-invariant subgroup of P. Then
there is an integer s > 0 such that P*+4%" < T < PP,

. . . . ¢ t4
Proof. Taking pth powers induces isomorphisms of factor-groups P?'/ P? '

and pth powers of elements in T are again in T'. Therefore we have the following
inequalities:
IT/(TNPP)| < |(TNPP)/(TNPP)| < ... < |(TNPP" )/ (TNPP)| = [T PP .

Since the ranks are at most p®, there can be at most p” strict inequalities in this
chain. If each segment of equalities has length at most 4n — 1 (with a possible
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exception for the last segment of equalities satisfying T N P?' = P”‘), then
the result follows. Suppose the opposite; then there is a segment of equalities
within a section PP* = PP*/P?** of exponent p* > p*"+! such that TN P?* #
P?", where the bar denotes the image in P/P?**". The section prettil g
abelian by Lemma 13.10 and hence homocyclic of exponent p*~l/2 > p2nt1,
Then T N PP*""™ is a proper homocyclic subgroup of PPt of the same
exponent p*~[/2. This, however, contradicts Lemma 13.3(a). O

To lighten notation, put d = 4np™. Applying Lemma 13.12 to [P, P], we
choose an integer s such that

s+d

PP <[P, P]< PP,

(Here s is an analogue of the “degree of commutativity” from the works on p-
groups of maximal class.) Then, by the Interchanging Lemma 11.12, we also
have

PP <y (P) S PP and PPR TR < pO) (13.13)

for any ¢,/ € N. Since P is soluble of (p,n)-bounded derived length g (see
(13.8)), we obtain from (13.13) that P***™“*¥ < p(9) = 1, whence

(29— 1)(s +d) > e, (13.14)

since P has exponent p°. Now, if s is (p,n)-bounded, so is e; hence we may
assume s to be large enough along with e.

We apply the considerations of §13.1 to the abelian homocyclic factor-
group A = P/P* and its automorphism ¢, switching to the multiplicative
notation. Since s is large enough, there are an integer j satisfying 1 <j <=
and a (p,n)-bounded number a such that

e AP" < A; for the p-invariant subgroup A; < A4,

° = <ij ™ acts on A; as an automorphism of order p, and

e the number of fixed points of 1 on A is (p, n)-bounded.
Since a is (p, n)-bounded, we may assume s > a.

Lemma 13.15. The number of fized points of 1 on P is (p,n)-bounded.

Proof. By Lemma 11.14, the mapping z — 2?° " induces an isomorphism
of the abelian section A = P/P?" onto P?*"/P?" = PP, which is an iso-
morphism of Z (1)-modules, since ¥ commutes with taking powers. Hence the
number of fixed points of ¢ on PP is the same as on A and is (p,n)-bounded.
If there is any fixed point of ¥ outside PP, then its powers provide at least
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p* fixed points in PP*"" (recall that P is uniformly powerful). In this case s is
(p,n)-bounded, whence, by (13.14), the exponent of P is (p,n)-bounded and
hence the order of P is (p,n)-bounded. a

Corollary 13.16. For the induced automorphism o) of the associated Lie
ring L(P), we have p’Cr(p)(¥) = 0 for some (p,n)-bounded number b.

Proof. By Lemmas 13.15 and 2.12, all of the |Cly(p)/qyiy, (p) ()| are (p,n)-
bounded, and Crp)(¥) = @ Ci(Py/risr (P)(¥)- a

Proposition 13.17. The group P has a subgroup of (p,n)-bounded indezx
which is nilpotent of class at most h(p), the value of Higman’s function.

Proof. Recall that PP**" < [P, P] < PP’ where d = 4np", and that
that s > a + d. By Lemma 11.14, the mapping z — z?° induces the ho-
momorphism of A?" = PP*/P?’ onto PP***/PP*** which is a homomorphism
of Z (y)-modules. Therefore ¢? acts trivially on PP***/P?"** and hence so
on PP***/[P P]. In the additive notation, ¥® acts trivially on p*t¢P/[P, P]
regarded as an additive subgroup of the associated Lie ring L(P). Let M
denote the Lie subring of L(P) generated by p*t?P/[P, P]. Then 4 is an au-
tomorphism of M of order dividing p. We apply Higman’s Theorem 7.19(b)
to obtain that

Ph+1’7’h+1(M) = a1 (pPM) <ia(Cu(¥)),
where h = h(p) is the value of Higman’s function. Then, by Corollary 13.16,
P01 (M) < Pia(Cu(9)) = ia{p’ Cu(¥)) = 0,

where b is a (p,n)-bounded number. In particular, for the homogeneous com-
ponent of weight h + 1, we have

P () [P/[P, Pl,...,P/[P, P]]
ht1
= phtith [pu+dP/[P, P),...,p"**P/[P, Pl] =0.
ht1

In terms of the group P, this implies that u41(P)?’ < yrs2(P) for the (p,n)-
bounded number f = b+ (A + 1)(a + d + 1). Using (13.13), we obtain
Pph(s-l-d)-l-f S 7h+1(P)pf S 7h+2(P) S Pp(h-l-l)a-

If PP™*"* = 1, then y441(P)?’ = 1 and we can take PRY/I o & subgroup
of (p,n)-bounded index which is nilpotent of class at most k since, then

7h+1(Pp[f/(h+1)l+1) < "7’h+1(P)pf -1
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by the Interchanging Corollary 11.13. If, however, prite # 1, the inclusion
prret s < pp®™*D*in 3 uniformly powerful p-group P implies that h(s+d) +
f > (h+1)s, whence s < hd+ f, so that s is (p,n)-bounded. Then by (13.14)
the exponent and hence the order of P itself are (p, n)-bounded too. a

Thus, by Proposition 13.17, in proving Theorem 13.1 we may assume P
to be nilpotent of class at most h = h(p). Since h(2) = 1 and A(3) = 2
(Lemma 7.11), this already finishes the proof in the cases p = 2 and p = 3.
Hence we may now assume that p > 3. It remains to prove the following
proposition.

Proposition 13.18. Let p > 3 and suppose that Q is a finite p-group of
nilpotency class ¢ admitting an automorphism ¢ of order p* with ezactly p fized
points. Then Q has a subgroup of (p,n, ¢)-bounded index which is nilpotent of
class at most 2.

Reduction to Lie rings. To prove this proposition, we use induction on
the nilpotency class ¢. By Lemma 2.12, |Cg/z(0)(¢)| < p. By the induction
hypothesis, @/Z(Q) has a subgroup of (p,n,c — 1)-bounded index which is
nilpotent of class 2; its preimage in @ is nilpotent of class 3. Hence we may
assume () to be nilpotent of class 3 from the outset. Since p > 3, we can apply
the Lazard Correspondence (see Example 10.24). Let L be the Lie ring that
is in the Lazard Correspondence with @Q); note that the additive group of L is
a finite p-group. Then ¢ can be regarded as an automorphism of the Lie ring
L acting in the same way on the set L = @; in particular, |Cr(¢)| = p. It is
sufficient to find a Lie subring of L which is nilpotent of class at most 2 and
has (p,n)-bounded index in the additive group of L. Then the same subset is
a subgroup of @) which is nilpotent of the same class and has the same index
in Q. This provides our final reduction to Lie rings, which are considered in
the next section. a

§ 13.3. The Lie ring theorem

We prove independently a result analogous to Theorem 13.1 (although
we need only a much more special situation to finish the proof of Proposi-
tion 13.18).

Theorem 13.19. Suppose that L is a Lie ring whose additive group is a
finite p-group. If L admits an automorphism ¢ of order p® with exactly p fized
points, then L has a nilpotent ideal of class at most 2 (commutative, if p=2)
which has (p,n)-bounded index in the additive group of L.
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Proof. For a time, we shall consider the additive group of L (denoted by the
same letter) and regard ¢ as its automorphism. First, we perform a reduction
to the case where L is homocyclie, similar to that in §13.2 for groups. By
Corollary 2.7, the rank of L is at most p*. Hence there can be at most p*
striet inequalities in the chain

|L/pL| > |pL/p*L| > ... > |p'L/p LI > ... .

Every segment with equalities gives rise to a homocyelie section of L, so that
we obtain a series of L of length at most p™ with homocyclic factors:

L>p"L>p*L>...>p"L>0. (13.20)

Lemma 13.21. There is at most one factor of exponent > p***! in the
series (13.20).

Proof. Suppose that both factors S; = p*L/p'"+'L and S, = p*L/p'*+ L
in (13.20) have exponents p*,p' > p*"*! respectively, for some r < s. The
mapping £ — z?° " induces a homomorphism ¥ of U = $;/p***'S; onto
T = S3/p*"*1S,. The kernel V = Ker ¥ is non-trivial since the rank of U is
larger than the rank of 7. By Lemma 1.6(b), V is a proper direct summand
of U. Since ¢ commutes with taking powers, V is g-invariant. This contradicts
Lemma 13.3(a). a

Since the length of the series (13.20) is (p, n)-bounded, Lemma 13.21 means
that there are (p,n)-bounded numbers a and b such that p*L/p*~*L is a ho-
mocyclic section, where p° is the exponent of L. This section is the additive
group of the Lie factor-ring M = p®L/p*~*L. Suppose that M has a nilpotent
ideal of class < 2 which has (p,n)-bounded index in the additive group of M.
Then v3(p°M) = 0 for some (p, n)-bounded number ¢, so that pPy3(p*+°L) = 0.
Then

Ya(p*HPHIL) < Pya(pL) = 0,

and p*tetl/3H1[ s a nilpotent ideal of class < 2 which has (p,n)-bounded
index in the additive group of L. (Similarly, if y2(p°M) = 0 for some (p, n)-
bounded number ¢, then 7, (p*+ctl/A+1 L) = 0, and p**+<+P/Z2H1[ is a commu-
tative ideal of (p,n)-bounded index in the additive group of L, as required
in the case p = 2.) Therefore, we may assume the additive group of L to be
homocyclic from the outset (the order of ¢ might have changed, but only to
become less, and the number of fixed points remains p). Let p* be the exponent
of the additive group of L; we may assume that e is large enough, since if e is
(p,n)-bounded, then the order of L is (p,n)-bounded.

Lemma 13.22. For some (p,n)-bounded number r = r(p,n), the ideal p"L
is nilpotent of class at most h(p), the value of Higman'’s function.
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Proof. We apply the reasoning of §13.1 to the additive group of L. Since
e is large enough, there are an integer j satisfying 1 < j < n and a (p,n)-
bounded number a such that 1 = ¢” " acts as an automorphism of order p
on p*L with (p, n)-bounded number of fixed points. Replacing L by p*L (whose
additive group is homocyclic too), we may assume that ¢ is an automorphism
of order p with (p,n)-bounded number of fixed points, p™, say. Let h = h(p)
denote the value of Higman’s function; by Higman’s Theorem 7.19(b), we have

Yr+1(PL) <3a(CL(¥)). Then
7h+1(P[m/(h+l)]+2L) < Ph+1+m7h+1(L)

= P (PL) < p™ia(CL(¥)) < a(p™CL(¥)) = 0.
Thus, pt™/(**+1)+2[, is the required nilpotent ideal of class at most b = h(p). O

Since p" L in Lemma 13.22 has (p, n)-bounded index in the additive group
of L and remains homocyclic, we may assume that L is nilpotent of class at
most h(p). This completes the proof of Theorem 13.19 in the case of p = 2,
since h(2) = 1 (see 7.11). We assume p > 2 for the rest of the section; then
we need to find a nilpotent ideal of class < 2 whose additive group has (p,n)-
bounded index in L.

Applying Lemma 13.3(b) to [L, L] as an additive subgroup of L we choose
an integer s such that

Pt L <L, L] < p°L.

(Here, again, s is an analogue of the “degree of commutativity”.) We write,
for short, d = 2np™, which is a (p,n)-bounded number. Then

p UYL < 4. (L) < pL (13.23)

for any ¢ € N. Recall that p® is the exponent of the additive group of L. If
2s > e, then (13.23) implies that 3(L) < p**L < p°L = 0, so that L itself
is nilpotent class < 2. So we may assume 2s < e. We shall effectively prove
that e — 2s is (p,n)-bounded; then the ideal p*~2*L of (p,n)-bounded index
will be the required one since it is nilpotent of class < 2: indeed, y3(p*~>*L) =
P8 3(L) < pP8t2L < p°L = 0, since 3¢ —4s > ¢ & ¢ > 25 by our
assumption.

The main idea of the proof is to define new products [a,b] = ;lz[a, b]. This
operation becomes a Lie multiplication on L = L/p*~%*L. Since [L, L] (with
respect to the old Lie products) “almost equals” p*L, the new Lie ring L will
be “almost equal” to [L,L]. An application of Kreknin’s Theorem will then
imply that the exponent of the additive group of L is (p,n)-bounded, which
means exactly that e — 2s is (p,n)-bounded, as desired. We proceed with
precise definitions.
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Definition 13.24. For any a,b € L, we define the new operation by setting
[a, b] to be some p°th root of [a,b] in the additive group of L. In other words,
for each pair (a,b), we fix an element ¢(a, b) such that p*c(a,b) = [a,b], which
is possible since [a,b] € p°L, and put [a, b} = c(a, b).

The new bracket multiplication may not satisfy the laws of Lie rings on L
(with the old addition). However, since p*[a, b] = [a, b] for every a,b € L by
the definition, the following hold:

p’la,a] = [a,a] = 0O
P’ ([a1 % ag, 8] — [a1, B] F [az,8]) = [a1 % a3, b] — [a1, 8] F [az, b]
sz ([[[[a, b]a c] + [[[[ba C]’ a] + [[[[C’ a]a b]) = [[a’ b]’ c] + [[b’ c],a] + [[c, a]’ b] = 0.

I
=2

Only the third of these equations is not quite obvious, but it follows from the
equalities p**[[u,v],w] = p*([u,v], w] = [p°[u,v}, w] = [[v,v],w]. Since the
additive group of L is homocyclic of exponent p® > p?*, these equalities imply
that

[a,a] € pL,

[[a1 + as, b] — [[al, b] F [[az, b] € pe—sL, (1325)
[la, 8], ] + [[b,c}. af + [[e, o), 0} € p~L
for any a,b,c € L.
Proposition 13.26. The additive factor-group L = L/p*~?°L endowed with
the multiplication [z,35] = [z,y], where the bar denotes images in L/p*~%°L,

is a Lie ring. The automorphism of the additive group of L induced by ¢ is an
automorphism of the Lie ring L.

(We use the same new bracket for the images.)

Proof. The anticommutative and distributive laws hold by the inclusions
(13.25) and by the definition. For the Jacobi identity, note that [[&, 7], @] =
[T, v], ®} = [[w, v}, w] by the definition.

We denote the induced automorphism of the additive factor-group L/p*~2°L
by the same letter. We need to show that [z,7]® = [z*,§¥] for all Z,§ € L.
Since @ = a@ for all z € L, the left-hand side is [Z,7]° = [z,y]’ = [z, v]",
while the right-hand side is [2¥, 7¥] = [z%, y¢] by the definition. We have

P’([z,9]%) = (p°[2,9))* = [z,9]® = [z*,4%] = p°[*, "],

that is, p° ([z,y]® — [z%,y?]) = 0, which implies that [z,y]* — [z%,y*] €
p°°L < p~ %L, so that [z,y]” = [z¥,y¥], as required. a
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Completion of the proof of Theorem 13.19. From now on, L denotes the
Lie ring with additive group L/p®~?*L and multiplication [, ], and a bar over
elements and subsets of L denotes their images in L = L/p*~* L. Let [L, L]
denote the additive subgroup of L generated by all products [a,b], a,b € L;
then [L, L} = [L, L] where the right-hand side is the derived Lie subring of L.
We have p*[L, L] = [L, L] and hence, by (13.23), p>*¢L < p°[L,L]. In the
homocyclic additive group of L this implies that p?L < [L, L], unless s + d > e
(Lemma 1.5). If, however, s + d > e, then together with the inequality 2s < e
this implies that e < 2d, a contradiction with our assumptions that e is large
enough. We may therefore assume p**¢ < p° so that p¢L < [L,L] which
implies that p?L < [L, L] = [L, L]. Then

p*@-V[ < IV (13.27)

for the gth derived subring of L, for any g € N.
Note that the order of ¢ as an automorphism of L divides p™ and the num-

ber of fixed points of ¢ on L is exactly p. We apply Kreknin’s Theorem 7.19(a)
to get

PP I® = " D) < W(Cre), (13.28)

where k = k(p") is the value of Kreknin’s function. Since pia(Cr(¢)) =
1a(pCr(¥)) = 0, we obtain from (13.27) and (13.28) that

n. -7 nok 7 (k
pr? DL < p ' IO < py(Cx(e)) = 0.

Since the exponent of the additive group of L is p*~2°, this means that e —2s <
1 +n2* 4+ d(2% — 1), so that e —2s is (p, n)-bounded since d, k and n are (p,n)-
bounded numbers.

As a result, the ideal p*=2°L of the original Lie ring L has (p,n)-bounded
index in the additive group of L. This is the required nilpotent ideal of class
at most 2: indeed, y3(p*~2°L) = p*~%0y3(L) < pPe S+ < p°L = 0, since
3e —4s > e & e > 2s, which is true by our assumption in the case p #2. O

As noted at the end of §13.2, this completes the proof of Theorem 13.1.

Remarks. 13.29. The Lie ring result is, at least formally, more general
than for groups, since the Lie ring is not presupposed to be nilpotent or soluble.
But of course, the “modular” situation immediately provides reduction to the
soluble (or nilpotent) case, see Remark 8.13.

13.30. N. Blackburn [1958] proved that every p-group of maximal class P
has a subgroup P; of index p and an element @ € P\ P, such that |Cp, (a)| = p.
Then a induces by conjugation on P, an automorphism ¢ of order p with p
fixed points. So we have the following.
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Corollary 13.31. ([C.R.Leedham-Green and S.McKay, 1976], [R. She-
pherd, 1971]) Every p-group of mazimal class has a subgroup of p-bounded
index which is nilpotent of class 2 (abelian if p=2).

p-Groups of maximal class were studied in a number of papers (by C. R. Lee-
dham-Green, S. McKay and others), where their structure was studied in much
detail, approaching even a kind of classification. See also Example 10.28
[B. A.Panférov, 1980] of p-groups of maximal class of unbounded derived
length (for different p, of course).

13.32. A finite p-group P has coclass r if |P| = p"** where ¢ is the nilpo-
tency class of P (so the p-groups of maximal class are precisely the p-groups of
coclass 1). The theory of p-groups (and pro-p-groups) of given coclass was de-
veloped in the works of S. Donkin, C. R. Leedham-Green, A. Mann, S. McKay,
M. Newman, A.Shalev, W. Plesken, E. I. Zelmanov and others. The main re-
sult for finite p-groups is similar to that for maximal class: Every finite p-group
of coclass r has a subgroup of (p,r)-bounded index which is nilpotent of class 2
(abelian, if p=2). In [C.R.Leedham-Green, 1994a,b] even a kind of classifi-
cation is proposed for p-groups of given coclass. A larger portion of p-groups
of given coclass have an element which induces by conjugation an automor-
phism of order p™ on a subgroup of bounded index. But, unlike p-groups of
maximal class, there is no easy reduction of the general situation to this case.
Remarkably, in the works of A. Shalev and E. I. Zelmanov [1992] and A. Shalev
[1994] theorems of G.Higman and V. A.Kreknin became a new tool in the
theory of p-groups and pro-p-groups of given coclass, with effective bounds
for the indices. (J. Alperin [1962] was the first to apply Higman’s Theorem to
studying p-groups of maximal class, see Remark 8.7.)

Exercises 13

1. Extract an explicit upper bound for the index of the nilpotent subgroup
of class 2 in Theorem 13.1.

2. Prove that the sum (13.4) is “almost direct”: there is a (p,n)-bounded
integer ¢ such that if ¥, k;u; = 0 for some u; € U;, ki € Z, then ptk; =0
for all i.

3. Use 2 to derive that j satisfying (13.6) is unique if e is large enough.

4. Instead of (13.27), apply Higman’s Theorem 7.19(a) to a suitable subring
p*L and its automorphism ¢ = ? of order p with (p, n)-bounded number
of fixed points. Examine whether the bound for the index can be improved
in this way.



Chapter 14

Automorphism of order p
with p™ fixed points:
almost nilpotency of m-bounded class

Theorem 8.1 states that if a finite p-group P admits an automorphism
of order p with p™ fixed points, then P has a subgroup of (p,m)-bounded
index which is nilpotent of p-bounded class. In this chapter we prove that
the nilpotency class of a subgroup of (p, m)-bounded index can be bounded in
terms of m only. The following theorem is due to Yu. Medvedev [1994a,b].

Theorem 14.1. If a finite p-group P admits an automorphism ¢ of prime
order p with ezactly p™ fized points, then P has a subgroup of (p,m)-bounded
indez which is nilpotent of m-bounded class.

Neither Theorem 8.1 nor Theorem 14.1 follows from the other: if p is
much less than m, then Theorem 8.1 gives a better result; on the other
hand, if m is much less than p, then Theorem 14.1 is better. Theorem 14.1
confirmed the conjecture from [E.I. Khukhro, 1985] (also [Kourovka Note-
book, 1986, Problem 10.68]). This conjecture was prompted by the result
of C.R.Leedham-Green and S.McKay [1976] and R.Shepherd [1971] on p-
groups of maximal class, which amounts to the special case of Theorem 13.1
where |¢| = |Cp(¢)| = p implies that P has a subgroup of p-bounded index
which is nilpotent of class 2.

The proof of Theorem 14.1 is essentially about Lie rings; we use many of the
of techniques developed in Chapter 13, including the lifted Lie products from
[Yu. Medvedev, 1994b]. The reduction to Lie rings is easier than in Chapter 13,
since here we are not constrained by the requirement to obtain such a strong
bound for the nilpotency class as 2.

Reduction of the proof of Theorem 14.1 to Lie rings. By Theorem 8.1, P has
a subgroup of (p,m)-bounded index which is nilpotent of class at most k(p),
the value of Higman’s function. Thus, we may assume P to be nilpotent of
class at most h(p). Then we may use induction on the nilpotency class: by the
induction hypothesis, P/Z(P) has a subgroup of (p, m)-bounded index which is
nilpotent of m-bounded class g(m) (since |Cp/z(p)(¢)| < p™ by Lemma 2.12).
Thus, P may be assumed to be nilpotent of class g(m) + 1. We may assume
that p is large enough, larger than any function of m to be constructed, since
otherwise we can simply take h(p) for the bound of the nilpotency class. In
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particular, we may assume p to be larger than g(m) + 1, the nilpotency class
of P. Therefore the Lazard Correspondence can be applied (Example 10.24),
so that the problem about P is translated into the analogous problem about
the corresponding Lie ring. a

Thus, it suffices to prove the corresponding Lie ring result. In fact, the
rest of the chapter is devoted to proving the following theorem on Lie rings
of Yu. Medvedev [1994b], which actually asserts more than required for the
group-theoretic application and is interesting in its own right.

Theorem 14.2. Suppose that L is a Lie ring whose additive group is a
finite p-group. If L admits an automorphism ¢ of order p with ezactly p™
fized points, then L has a nilpotent ideal of m-bounded class which has (p,m)-
bounded indez in the additive group of L.

§ 14.1. Almost solubility of m-bounded derived length

The first step, however, will be to find a soluble ideal of m-bounded derived
length with (p, m)-bounded index in the additive group of L.

Theorem 14.3. Suppose that L is a Lie ring whose additive group is a
finite p-group. If L admits an automorphism ¢ of order p with ezactly p™
fized points, then L has a soluble ideal of m-bounded derived length which has
(p, m)-bounded indez in the additive group of L.

Proof. The rank of the additive group of L is at most pm by Corollary 2.7,
so it suffices to find a soluble subring of m-bounded derived length with (p, m)-
bounded index in the additive group of L: then, for some (p, m)-bounded
number r(p,m), the ideal p"®™ L is contained in this subring. Because of the
bound for the rank, any section of the additive group of L that has (p,m)-
bounded exponent has (p,m)-bounded order.

We shall use notation of a right Z(y)-module for L. We may assume that

I+lp+1p2 -+ 1Pt =0 (14.4)

for all ! € L. Indeed, the set X = {—z + z¢ | z € L} is an additive subgroup
of L. Since ¢ acts trivially on the factor-group L/X, we have |L/X]| < p™
by Lemma 2.12, whence p™L C X. The ideal p™L has (p, m)-bounded index
in L, and for any ! € p™L there is x € L such that | = —z 4 z¢, whence

l+lo+lp*+- 4+ lpP ' =—zt+zp—zp+ 20> — - 2P = 0.

Replacing L by p™L, from now on we assume that (14.4) holds for L (the
number of fixed points of ¢ might become only a divisor of p™). Note that
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(14.4) holds for the induced automorphism ¢ in every -invariant section of L.
This equation has a few important consequences.

Lemma 14.5. It follows from (14.4) that

(a) for any @-invariant section U of the additive group of L we have
pCu(¢) = 0;

(b) for any homocyclic p-invariant section V of the additive group of L
we have |Cv(@)| = |Cpyypitiv(p)| whenever p'V #£ 0.

Proof. (a) If zp = z, then (14.4) implies that pz = z+zp+- - -+z¢?P~1 = 0.
(b) If p* is the exponent of V, then Cy(p) = Cpy(p) by (a). The
mapping r — p*~!~*z induces an isomorphism of the Z (p)-modules p'V/pit'V
and p*~1V. a

We shall need later the following information on one-generator Z (¢)-sub-
modules. Let M be a ¢-invariant homocyclic section of the additive group
of L. For any a € M \ pM, let V, denote the Z (¢)-submodule generated by
a, that is, V, = (a, ap, ..., apP~1).

Lemma 14.6. It follows from (14.4) that V, N pM is a homocyclic group
of rank p — 1, and p*V, > p**'M NV, for any k € N.

Proof. Consider a free abelian group F of the same exponent p® as M, on
free generators fi,... , f,. The cyclic permutation of the generators f; — fii1,
where ¢ + 1 is taken modp, extends to an automorphism ¢ of F; in fact,
F is a free one-generator abelian {y)-group of exponent p°. Put R = F/D,
where D = (fi ++--+ fp); then R is a free abelian (g)-group of exponent
p° satisfying the law (14.4). As a cyclic subgroup of exponent p¢, D is a
direct summand of F, so that R is a homocyclic group of rank p — 1 and
of exponent p° (Lemma 1.6). Direct computation shows that |Cr(¢)| = p.
It follows that given any two @-invariant subgroups in R, one must contain
the other: otherwise, for ¢-invariant subgroups M # M NN # N, we have
(M + N)/(MNN) =M@ N with both M and N non-trivial, so that the
number of fixed points of ¢ on this section is at least p?, a contradiction, since
|Cszen(#)| < p by Lemma 2.12. In particular, every g-invariant subgroup N
of R satisfies p*R > N > p**'R for some k. Since V, has exponent p® and
satisfies (14.4), the mapping fi — a extends to a (¢)-homomorphism of R
onto V,, with kernel K, say. Since |a| = p°, we have K # p°~!R, whence
P 'R > K. It follows that Q._1(V,) = Q._1(R/K) is a homocyclic group
of exponent p*~! and of rank p — 1 (Lemma 1.5(e)). It remains to note that

Qe—l(‘/u) = ‘/u N Qe—l(M) = ‘/u an
Now, since V,NpM is homocyclic, we have Q,_x_1(V.NpM) = p*(V,NpM).
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Then p"**'M N Vi = Qe-k-1(Va) = Qe (Vo N pM) = p*(Va N pM) < p*V.
o

Now we perform a reduction to the case where the additive group of L is
homocyclic. We use many of the tools from Chapter 13. The difference is that
now there may be not only one “big” homocyclic section, but m, because the
dimension of any Z (¢)-module is essentially < m, rather than 1. We consider
for some time the additive group of L which we denote by the same letter.
Since the rank of L is at most mp, there can be at most mp strict inequalities
in the chain

|L/pL| > |pL/pL| > ...> |p'L/pt L] > ... .

Every segment of equalities gives rise to a homocyclic section of L, so that we
obtain a series of L of length at most mp with homocyclic factors:

L>p"L>p?L>...>p"L >0. (14.7)
Lemma 14.8. There are at most m factors of ezponent > p® in (1/.7).

Proof. Suppose that both factors Sy = p*"L/p+'L and S, = p*L/p+ L
in (14.7) have exponents > p®, for some r < s. The mapping z — 27"
induces the homomorphism ¢ of U = $1/p*$; onto T = S,/p%S;. The kernel
V = Ker4¥ is non-trivial since the rank of U is larger than the rank of T.
By Lemma 1.6(b), V is a proper direct summand of U. Since ¢ commutes
with taking powers, V is ¢-invariant. By Lemma 13.2, there is a ¢-invariant
subgroup W < U such that pU < V + W and p(V N W) = 0. Let a bar
denote the image in (V + W)/(VNW) =V & W; then V # 0 and W # 0.
Hence |Ci(¢)| < |Cyew(e)|- Applying 9 to the inclusions pU < V + W <
U, we obtain pT' < J(W) < T; hence |Cs,(¢)| = |Cr(¢)| = |Coow)(¢)| by
Lemma 14.5. Since 9(W) = W/(VNW) =W, we have |Cs,(¢)| = |Ci(¢)]- On
the other hand, |Cygw(®)| < |Cs,(¢)| by Lemma 2.12. As a result, |Cs,(¢)| =
ICw ()|l < |Crgw(e)l < |Cs(¢)|. We see that every successive factor of
exponent > p® in (14.7) has a strictly smaller number of fixed points of ¢.
Since there are at most p™ fixed points at the start (and the number is always
a power of p), there can be at most m factors of exponent > p® in (14.7). O

Every factor of the series (14.7) is the additive group of the corresponding
Lie ring p** L/p*+ L. Suppose that we proved Theorem 14.3 in the case where
the additive group of L is homocyclic. Then there are a (p, m)-bounded number
r = r(p,m) and an m-bounded number g = g(m) such that, for every factor
H of exponent > p* in (14.7), the subring p"H is soluble of derived length
at most g. The other factors in (14.7), of exponents < p?, together with the
sections H/p"H, glue up to at most m + 1 factor-rings between at most m
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sections p” H. Every such piece has (p, m)-bounded exponent dividing p?™P+",
since there are at most mp terms in (14.7). Then

pZmp+r(p2mp+r( . ( 2mp+r(p2mp+r L) (g))(g) L )(g))(gl — 0,

—

m+1 m

whence, by (5.23), (p“®™ L)(™9) = 0 for some (p, m)-bounded number u(p, m)
and the m-bounded number mg = mg(m), so that Theorem 14.3 would be
proved. Thus, we may assume that the additive group of L is homocyclic from
the outset; we fix the notation p° for the exponent of the additive group of L.

One of the main ideas of the proof, lifted Lie products, already appeared
in Chapter 13. Suppose that b is the minimal and ¢ is the maximal positive
integer such that p?L < [L,L] < p'L (“bottom” and “top”). If e < 2¢, then
[L,L,L] < p®L < p°L =0, that is, L is nilpotent of class 2; so we may assume
e > 2t. We can define the new operation exactly as in Definition 13.24, by
putting [z, y] to be any of the p’th roots of [z,y] in the additive group of L.
By Proposition 13.26, I = L/p*~2!L is then a Lie ring with respect to the
old addition and this new multiplication, and ¢ becomes an automorphism of
this new Lie ring L with at most p™ fixed points. (We use tildes to denote
images in L/p°~2tL, rather than bars as in § 13.3, because we shall need bars
for other purposes here.) Note that (14.4) holds for L too. By Higman’s
Theorem 7.19(b),

Yhpyr (P BOHIITY < gy ) 1 (PL) < p™1a{C(9)) = 1a(p"Cp () = 0

Replacing L by the subring pt™/(*®)+)+2[, of (p, m)-bounded index, we may
assume that

(L) =0 (14.9)
from the outset. Let [[L L] denote the additive subgroup of L generated by the

[z,v], z,y € L; then [[L L] = [L,L]. In the homocyclic additive group of L
the inclusion p*L < [L, L] = p*[L, L] implies that p?~*L < [L, L], unless b = e.
Then p*~*L < [L, L], including the case of b = e, since p**L < p*~2'L = 0.
By (14.9), it follows that

PO < (L) = 0. (14.10)

Thus, we have the following lemma.

Lemma 14.11. We have
(a) e—2t < h(p)(b—t);
(b) ~3(p*~*L) = 0.
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Proof. (a) This follows from (14.10), since p*~* is the exponent of the
additive group of L. (b) We have y3(p* L) = p®6tns(L) < pPeSH2t[ <
p°L =0 & 3e— 4t > e & e > 2t which is true by our assumption. a

Note that if e — 2t is a (p,m)-bounded number, then p*~2!L is the required
subring of (p, m)-bounded index that is nilpotent of class 2 by Lemma 14.11(b),
and Theorem 14.3 is proved. In §13.3 the difference b— ¢ was (p, m)-bounded,
and so the result followed as in Lemma 14.11. The main efforts in this chapter
will be effectively applied to make the difference b — ¢ small. The new Lie
ring with the Lie product [,] will again be used for that. The scheme of the
proof is as follows. First, we show that ¢ may be assumed to have strictly
less fixed points on ([L, L] 4+ p®L)/p®L; induction on m then gives that this Lie
ring contains an ideal of m-bounded derived length and (p, m)-bounded index.
This means that (p°L)) < p*L for some m-bounded g and (p,m)-bounded s.
The central proposition states that p®*¢L is nilpotent of class 2 for some m-
bounded d and (p,m)-bounded €. Theorem 14.3 then follows since it is easy
to jump from pbL to p®L simply by taking ~a4(p*L).

In order to lighten notation, we shall denote an elementary abelian section
(H N p*M + p*t' M) /p*t! M of an additive group M simply by H N p*M and
call this section the p®-slice of H (in M).

We consider the inequalities for the orders of the p'-slices of [L, L]:

L, L]np'L] < |[L,L]NpHL| < ...

INA

L, LN 1L| < [[L, L] Np*L| = |[p"L/p"*'L].  (14.12)

These inequalities hold since [L, L] is invariant under the mapping z — pz
which induces isomorphisms of the factors p'L/p*'L, i = t,t +1,...,b; the
last strict inequality and equality hold by the definition of 5. The number of
strict inequalities in (14.12) is at most pm, since the rank of the additive group
of L is at most pm. Let

L, LlnphL| = ... = |IL,L]np»~1L|

be the last “long” segment of equalities of length b,—b;—1 > 2 in (14.12) (that
is, with b, —b; > 3 equal successive orders). Then ([L,L]Np* L)/([L,L]Np*2L)
is a homocyclic group of exponent > p*, while b — b, is (p,m)-bounded, since
there are at most pm gaps, each < 2, between b, and b in (14.12). If there are
no segments of equalities of length > 3 in (14.12), then b — ¢ < 2pm, whence
e — 2t is (p,m)-bounded by Lemma 14.11(a), and Theorem 14.3 follows by
14.11(b).

Lemma 14.13. |C(z, 11yt 1)/p021)(®)| < P™.
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Proof. We put U = p*2=3L/p>L. By the choice of b;, the image of
[L,L] N p>~3L in U is a proper homocyclic subgroup V, say, of exponent p°.

p'L
L, L
L
3 1% U
7 | } L p2L
. L

By Lemma 1.6(a), V is a proper direct summand of U. By Lemma 13.2, there
is a @-invariant subgroup W < U such that pU <V + W and p(V N W) = 0.
Let a bar denote the image in (V + W)/(VNW) =V @ W. Then W # 0,
whence [Cy(¢)| < |Cpgw(p)|- By Lemma 2.12, |Cyaw(®)| < |CL(#)]. On

the other hand, by Lemma 145, |C([L,L]+pb2L)/pb2L(<p)| = |CV((p)| = |C‘7'((P)|
Thus,

IC 14wt 1y (#)] = ICF(9)| < |Crgiw(e)l < |CLle)| = p™,
as required. a

Using induction on m in the proof of Theorem 14.3 we conclude that the
factor-ring ([L, L] + p*2L)/p’ L has a soluble ideal (p"[L, L] +p*>L)/p*2 L of m-
bounded derived length f(m), for some (p, m)-bounded r = r(p,m). Then

PR L, LYV < pPphL = pPL,

whence, for g = f(m) + 1,
P'L)9 <P (14.14)

for some (p, m)-bounded number s = s(p,m), since b— b, is (p, m,n)-bounded.
Theorem 14.3 will easily follow from (14.14) and the following proposition.

Proposition 14.15. Suppose that L is a Lie ring whose additive group is
a homocyclic finite p-group of ezponent p°. Let b = b(L) be the minimal and
t = t(L) the mazimal positive integer such that pL < [L,L] < p'L. Suppose
that L admits an automorphism ¢ of order p satisfying (1{.4) and having
ezactly p™ fized points. Then, for some m-bounded number d = d(m) and a
(p, m)-bounded number € = e(p,m), the subring p?®-9%¢L is nilpotent of class
at most 2.
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First we show how Theorem 14.3 follows from Proposition 14.15.

Reduction of Theorem 14.3 to Proposition 14.15. Suppose we have proved
Proposition 14.15. For s and ¢ as in (14.14) and for d and ¢ as in Proposi-
tion 14.15, the ideal H = p*+l(*1)/4][, has (p,m)-bounded index in L and

Ya(ya(H9)) < ya(ya(pl+1/212° (pe L)(0)y)
~a(ya(pHEF N1 L))

< y(p™eL) < (L) = 0.

IN

IA

Thus, H is the required subring, being soluble of m-bounded derived length
g +log,d + 3 = f(m) + log,d(m) + 4. a

Proof of Proposition 14.15. First we apply the same arguments as before to
L satisfying the hypothesis of Proposition 14.15. We may assume that e > 2¢,
for otherwise [L, L, L] < p**L < p°L = 0, so that L itself is nilpotent of class 2.
As above, we apply Definition 13.24 and Proposition 13.26 to define the Lie
ring L on the additive group of L/p°~2tL with respect to the new multiplication
[,]- The same argument as above shows that we may assume that (14.9) holds,
and hence (14.10) and Lemma 14.11 hold too.

We proceed by induction on b — {. When b — t is (p,m)-bounded, the
result follows by Lemma 14.11: then e — 2¢ is (p,m)-bounded by 14.11(a), and
v3(p?~2tL) = 0 by 14.11(b), so that we can take ¢ = e — 2¢ and d = 0. (Saying
here that b —t is “(p, m)-bounded”, we mean that b — ¢ is not large enough
to qualify for the subsequent arguments, not larger than, indeed, a certain
(p, m)-bounded number to be actually determined in what follows.) Hence we
may assume b — ¢ to be large enough. The above calculation also shows that
e — 2t may be assumed to be large enough too.

It is sufficient to find a ¢-invariant section § of L which is “m-close to L”
and has smaller difference of the parameters b(.S) and ¢(.5), smaller than b—¢ =
b(L)—t(L), where b(S) and ¢(.5) are, respectively, the minimal and the maximal
integer such that p*(>)S < [§, 5] < p#5)§. (By a p-invariant section we mean
a factor-ring of a ¢-invariant subring over a ¢-invariant ideal of this subring.)
More precisely, suppose that we found a ¢-invariant section S of L such that,
for some m-bounded numbers d; = d;(m) and d; = dy(m),

o p /I < 8§ < L/I, where I is a ¢-invariant ideal such that
pd
p2l =0

e the additive group of S is homocyclic; (14.16)

o b(S)—t(S) <b—-t.
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By the induction hypothesis applied to S, we shall have v3(p**-t-1+¢3) = 0 for
some m-bounded number d = d(m) and (p, m)-bounded number ¢ = &(p, m),
which means that 4(p?®-t-D++4 [) < I. Then

73(pd(b—t)+€+d1+[d2/3]+1—dL) < pd273(pd1+d(b—t—1)+€L) < pdzl = 0. (14.17)

If necessary, we can enlarge d to ensure that d; +[dz2/3]+1 < d. Since d; and d,
are m-bounded numbers, this enlargement has to be done only once, and the
enlarged value of d remains to be m-bounded. Then € +d; +[dy/3]+1—d < ¢,
and (14.17) implies that ya(p?®-t+<L) = 0, as required.

Before making our way through the technically difficult and multistage
construction of S satisfying (14.16), let us take a more relaxed, informal look
at the simpler case of m = 2 where we can see more clearly the ideas behind
the calculations. Let us use = to signify “almost equality”, whatever meaning
that may have. So let m = 2. Recall that p°L < [L, L] < p*L with b minimal
and ¢t maximal possible and that p® is the exponent of the additive group of L.
Using Lemma 14.6 and the generalized Maschke’s Lemma 13.6, one can show
that then [L, L] ~ p*V 4 p?W, where both V and W are one-generator Z ()-
modules such that L ~ V +W. The Lie ring L = L/p*~2L with respect to the
new Lie products [, ] is nilpotent of class h(p) (see (14.9)). Hence we must have
[V, L] § p*2L for A = (e—2t)/h(p): otherwise, since e—2t is large enough, we
would have [V, L] % p**V = [V, L] > p*V for some \ < (e—2t)/h(p), whence
7h(p)+1(f,) > pM®*V > p==24¥/ and hence 7h(p)+1(f,) # 0, a contradiction. Since
[V,L] < [L,L] ~ ptV + p*W, it follows that [V, L] S p'*2V + p*W.

Now we put L, = V + p’L for some § which is large enough to beat the
“rs-fudging”, but is much smaller than A or b —¢. Then, on the one hand,
(L1, 1] = [V,VI+ 'V, L]+ p7IL, L] § [V, L]+Pp¥[L, L]

~

QA

PV + W+ pP(L, L]

&

pt+AV +pbW +pt+25V +pb+25W

QA

pt+25V +pt+36W,

because A > 26 and b > t + 36, since b — ¢ is large enough. The right-hand
side is exactly p'*2(V 4+ p?W) = p**2° L. This means that ¢(L;) g ¢t +26. On
the other hand,

[L1, L] > pP[L, L] & pH5V + p"+ W 2 p™0V + pH5W,

because t + 26 < b+ 8, since b — ¢ is large enough. Here we have exactly
p**%Ly on the right. This means that b(L,) S b+ 6. To make a section with
homocyclic additive group, we factor out the bottom putting S & L,/p*~¢V.
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The same inequalities hold for S, since S differs from L, only at the bottom
of V, far from ¢ + 24, since e — ¢t is large enough. We see that ¢(S) g t(L) + 26
and b(S) S b(L) + 6. As a result, b(S) — ¢(S) S b(L) — ¢(L) — é and hence
b(S)—t(S) < b(L)—t(L), so that S is the required section, satisfying (14.16).

w
1% w 1%
(LT W
S
N
ptV .......................
b—t } i Py
b—t—-46
pbW e b - - - T
pb+55 pb+26W
T mod pe-sv

pt+265 Z [S, S] Z pb+65

When m is larger than 2, the picture is more complicated, but the same kind
of “skew” choice of S is possible, as a sum of certain one-dimensional Z {y)-
submodules of L. But, instead of writing an explicit formula for S, we shall
approach the desired section S satisfying (14.16) in an m-bounded number of
steps. In an inductive construction, in order to diminish the difference b — ¢
we shall “strangle” the top end of the derived subring, tightening the grip by
successively subtracting p— 1 from the rank of some slice, but moving at each
step to a higher slicer, about three times closer to ¢ from below.

To be more precise, in an m-bounded number of steps we shall construct
at each step a ¢-invariant section S; which is m-close to S;_, starting from
So = L (so that all S; will be m-close to L). Let by and #; denote, respectively,
the minimal and the maximal integer such that p*Sj < [Si, Si] < p* Si. At
each step either the difference b; — t; becomes smaller, in which case § = §;
is the required section satisfying (14.16) and the process terminates, or this
difference remains equal to b—# and, for some chosen m-bounded number § = §;
(which we shall specify later), the rank of the slice [S;, 5;] N pt+55; becomes at
least p—1 less than the rank of the slice [S;_,S;_;] N pt—1+36+45;_,. Since the
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rank of any section is at most mp, there cannot be more than 2m successive
subtractions of p — 1; this means that after at most 2m steps the difference
b; — t; must become smaller than b — ¢.

Sy Si
Pt‘—1 pti
[Si1, Siz1] 7 it 5,51
36 + .l....... ...... ..l.
e
if bt =
A/
phi- )

We formalize the construction of S; from 5;_; as follows:

S; is a -invariant section of 5;_;;
e the additive group of S; is homocyclic;

e for some m-bounded numbers d;1, d;2, we have
p%1 S, 1/I; < S; < Si_1/L, where I is a p-invariant ideal
of S;_1 such that p%2I; = 0; (14.18)

e either b; —t; < b—1t, orb;—t, =b—1t and

r([Si, Si] N ph+85) < v([Sio, Sia] N ph-138+45,,) — (p—1)

for some m-bounded number § = é,.

Here rU denotes the rank of U. Note that at every step we shall have ¢; + 36 +
4 < b;, because the original difference b—t is large enough and the parameters
b; and t; change m-boundedly at every step, since S; is m-close to L. Suppose
that this construction can be implemented sufficiently many times. Then,
starting with sufficiently large §, about 32™, after at most 2 steps we must
arrive at a situation where the difference b; — #; becomes smaller. Otherwise,
if the difference b; — #; remains constantly equal to b — ¢, there will be 2m
subtractions of p — 1 from the rank, which is impossible, since the rank of L is
at most pm. More precisely, we would then have
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r([ng, SZM] n pt2m+1527n)

< r([S2m—1, S2m-1) N plm—1+75,5,, 1) — (p—1) < ...

IN

r([SZm—37 SZm—S] n ptzm_’+33+1_252m—s) - S(P - ]-) < ...

< (L, I N p*® P 1L) — 2m(p — 1), (14.19)

where 9, is constructed from L with § = 3™ — 2, then S, is constructed from

S, with § = 32»~! — 2_and so on, up to S5, under the assumption that the

difference b; — t; remains constantly equal to b — ¢. (We used the elementary

formula 3(...(3(3+4) +4) +--+) +4 = 3°*! — 2 above.) But the right-hand
N e’

side of (14.198) is negative, since the rank is at most pm, a contradiction. Thus,
there must be the required decrease of the difference b;, — #;, < b — ¢ for some
io < 2m, which means that S = §;; is the required section satisfying (14.16),
and Proposition 14.15 is proved.

Each S; has the same properties as L, and the next section S;,1 is con-
structed based on S; only. Thus, we need to describe only one step from S;
to 541 satisfying (14.18) and, moreover, we may consider only the step from
L to S;. The major step in constructing 5) is the following lemma; we shall
see later that an element a satisfying its hypothesis always exists because of
the nilpotency of L (with respect to the new Lie products [,]). Again, “m-
bounded” here means that the value is bounded by a certain function of m
which is determined by the subsequent arguments. Recall that V, denotes the
Z (p)-submodule generated by a; see Lemma 14.6 for the properties of V;.

Lemma 14.20. Suppose that, for some m-bounded number § € N, an
element a € L\ pL is such that pt?+3V, C [L,L] and [V,, L) C p!+?+4[. Put
Ly =V, +p**2L. Then

(a) L1 is a @-invariant ided of L such that p**+*+2L, < [Ly,L4] <
ptOt2L,, that is, ¢(Ly) > t 4+ 6 +2 and b(L1) < b+ 6 +2, so that
b(L1) — (L) < b—¢

(b) if t(L1) =t +6+2, then

r([L1, L] N pBHLy) < p([L, L]0 pH+4L) — (p— 1),

Proof. (a) Since [V, L] C p¥+L < L,, thesum Ly = V, + p*?L is a
p-invariant ideal of L. We have

[LlaLl] = [‘/ua‘/u] +P6+2[VuaL] +p26+4[L7L]
< [Va, L] + p*+(L, L]
< pHEHL < pHiRL (14.21)
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so that ¢t(L1) > ¢t + 6 + 2, as required. To estimate b(L,) we again express
everything in terms of L rather than L;; in particular, p**%t2L; = p*+o+2y, 4
pPt25+4 [ We have

[LlaLl] Z p26+4[L,L] Z pb+26+4L.
It remains to show that p?+4[L, L] > p**%+2V,. By the hypothesis, p+25+3V, <
[L, L]. Since b — ¢ is large enough and § is m-bounded, we have b+ 6§ +2 >
t + 46 + 7, whence

pb+6+2‘/u S pt+46+7‘/u S p26+4[L,L].

(b) Let now ¢(L,) = t + 6 + 2. To calculate the rank of the slice in L; in
question, we express everything in terms of L. Asin (14.21) we have [Lq, L] <
[L, L] N p*t?5+4[. Hence the p'I)+éslice of [Ly, L,] in L, in question,

(L1, L] N pHlO+e L,

— ([Ll, Ll] n pt(L1)+6L1 + pt+26+3Vu + pt+36+5L) /(pt+25+3Vu + pt+36+5L),

is a subgroup of the factor-group
([L, L] n pt+26+4L + pt+26+3Vu + pt+36+5L) /(pt+25+3Vu + pt+36+5L)_

By the Homomorphism Theorems, this factor-group is isomorphic to the factor-
group of
Q — ([L L] n pt+26+4L + pt+36+5L) /pt+36+5L

by R, the image of ([L, L] N p**t2+4L 4 pH35+5[) N pt+ 2643V, in [ [pt+3¥+5L,
We claim that

o the rank of Q is equal to the rank of the pt+3*+4.slice of [L, L] in L, the
other slice in question;

e R contains a direct summand of @ of rank p — 1

(then this summand is “cut off” in Q/R, which will finish the proof). Indeed,
the rank of @ is equal to the rank of [L, L] N pt+36+4[ because in the homo-
cyclic section pt*t20+4[ [ptt38+5 [, the subgroup p!t¥+4L/ptt3+5L contains all
elements of order p, so that

[L,L]N pH3+HL = O, (([L,L] N ptta+L 4 pt+36+5L) /pt+3.s+5L) = 0(Q).
Now we consider the second group R. We have

([L, L] N pt+25+4L + pt+35+5L) N pt+26+3‘/u Z [L, L] N pt+25+4L N pt+25+3‘/u'
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By the choice of a and by the properties of V, (Lemma 14.6), we have
[L, L] > p*?43Y, > p* ¥+ LNV,
and p**?*4[, NV, is a homocyclic group of rank p — 1. Hence
[L, L) N pHH25+4L 0 pH2043Y, = pHH LNV, < (L, L)

and the image of p"t?+t4L NV, in L/p**3+°L is a homocyclic subgroup of
exponent p’*! and of rank p — 1 contained in

Q = ([L, L] N 2+ L 4 pHH3s+5 ) [pt+3s+5

Since Q also has exponent p’*!, the image of ptt#+4L NV, in L/pt+t3+5[ is
a direct summand of @ by Lemma 1.6(a). This image is contained in R, and
hence r(Q/R) < rQ — (p — 1). Since the pI1)*éslice of [Ly,L1] in L, is a
subgroup of Q/R, the result follows. a

Back in the proof of Proposition 14.15, the required section S; (satisfying
(14.18) with S5 = L) is defined to be L;/p°*5~2L;, where, recall, p° is the
exponent of the additive group of L. The additive group of L,/p*~%-2L; is
homocyclic because that of L is homocyclic of exponent p® and L, > p’*+2L
(Lemma 1.5). We have p¢=8-2L; = p*=9-2V, 4 pe=0-246+2[ — pe=-2V/ . this
is an ideal of L, since [p*~%~2V,, L] < p*~8-2+t+25+4[ — (. The ranks of the
ambient slices for ) coincide with those for L, and #(S)) = t(L;) because
e — 2t is large enough. (The parameter b(S;) can only become less than b(L),
in which case b(S;) —¢(S51) < b—t and S = 5 is the required section, satisfying
(14.16).)

To finish the proof of Proposition 14.15, and hence of Theorem 14.3, it
remains to show that we can always find an element a satisfying the hypothesis
of Lemma 14.20 for a given m-bounded §. Note that p°V, C [L, L] if and only if
p’a € [L,L], and [V,, L] C p°L if and only if [a, L] C p° L. Suppose that, for an
m-bounded §, no a exists satisfying the condition of Lemma 14.20. We choose
a1 € L\ pL such that p**?5+3q, € [L, L}, which is possible, since e — 2t is large
enough. Since [a;, L] € p**?+*L by our assumption, there is a; € L\ pL such
that pt26t3g, € [a;, L], and so on. Let [[u,L/]_StElote the additive subgroup
generated by the elements [u,l], | € L; then [u, L] = [4, L] in the Lie ring L
(with new Lie products [,]). Since e — ¢ > b — ¢t is large enough, we have the
following in the homocyclic additive group of L of exponent p®:

pt+26+3a1 € [L,L] — pt[[L,L] = p25+3a1 (S [[L,L];
Pt+26+3a2 € [a),L] = Pt[[al,L] = P26+3a2 € [[al’L]

= p2(25+3)a2 c Il‘p26+3a1,L] S [[[[LaL]?L]7
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and so on. In the Lie ring L, after h(p) steps, we obtain using (14.9)
ph(P)(26+3)’dh(p) € Yhp)41 ([j) =0.

Since app) € L\ pL, the order of @y, in the additive group of L is p2%, and
hence we must have e — 2t < A(p)(26 + 3). This, however, contradicts our
assumption that e — 2¢ is large enough. a

Remarks. 14.22. One can show that (14.4) implies that the rank of L
is at most m(p — 1), so that, in fact, m steps would suffice in the process of
constructing the §; described, starting with § = 3™+! —2,

14.23. In [Yu.Medvedev, 1994b] the part of the proof that deals with
decreasing the difference b — ¢ is encoded into essentially one formula; we tried
to loosen this tight knot by breaking the calculation into small steps, in the
hope of making the idea come through more clearly.

§14.2. Almost nilpotency of m-bounded class

In proving Theorem 14.2, we may assume the Lie ring in question to be
soluble of m-bounded derived length by Theorem 14.3. Induction on the de-
rived length (using Theorem 5.27) reduces the proof to the main case where
the derived length is 2. Many of the steps resemble the proof of Theorem 14.3;
a new lifted Lie ring product [,] is also defined in this section and, again,
the main efforts are essentially applied to squeeze the ideal [L, L, L] (instead
of [L,L]) into a (p,m)-bounded layer of L. It may be left as an exercise to
the reader to adjust the reasoning from §14.1 for the proof of Theorem 14.2
for Lie rings of derived length 2 and then to perform induction on the derived
length. So the contents of this section may be regarded as a solution to this
exercise.

There is a construction in Lie rings which is analogous to semidirect prod-
ucts for groups: a Lie ring is a semidirect sum of the ideal A and a subring B
if its additive group is the direct sum A @ B. The case of derived length 2 can
be easily reduced to the case of a semidirect sum, which is dealt with in the
following proposition.

Proposition 14.24. Let L = A® B be a Lie ring whose additive group is

a finite p-group, with abelian ideal A and abelian subring B. Suppose that L

admits an automorphism ¢ of order p with ezactly p™ fized points, such that

both A and B are p-invariant. Then p/®™[A, B,... , B] = 0 for a (p,m)-
S e’

9(m)
bounded number f(p,m) and an m-bounded number g(m).

Proof. First, the same argument as in § 14.1 shows that we may assume L
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to satisfy (14.4). Next, we perform a reduction to the case, where the additive
group of A is homocyclic, similar to that in the proof of Theorem 14.3. Since
the rank of A is at most mp, there can be at most mp strict inequalities in the
chain

|A/pA| > [pA/p*A| > ... > |[P AP A > ... .

Every segment with equalities gives rise to a homocyclic section of A, so that
we obtain the following series of length at most mp with homocyclic factors:

A>p"A>p2A> ... >p"A>0. (14.25)

Lemma 14.26. There are at most m factors of exponent > p® in (14.25).

Proof. Repeat the proof of Lemma 14.8, replacing the additive group of L
by that of A. a

For every homocyclic section H = pi"A/p'r+1 A in (14.25) we can form the
Lie ring H @ B with naturally defined multiplication; this Lie ring admits ¢ as
an automorphism of order dividing p with at most p™ fixed points. Suppose
that we proved Proposition 14.24 in the case where the additive group of A
is homocyclic. Then there are a (p,m)-bounded number r = r(p,m) and an
m-bounded number u = u(m) such that, for every “big” section H in (14.25),
of additive exponent p*, we have p"[H, B,...,B] = 0. The small sections

O A

in (14.25), of exponents < p?, together with the sections H/p"H glue up to
at most m + 1 factors between at most m sections p” H; all these pieces are
of (p, m)-bounded exponent dividing p**™*". Then

plmt)@minig B B]=0.
N,/

mu

Thus, we may assume that the additive group of A is homocyclic from the
outset; we fix the notation p® for the exponent of the additive group of A.

Suppose that b is the minimal and ¢ is the maximal positive integer such
that pPA < [A, B] < ptA. If e — 2t < g(p, m) for some (p, m)-bounded g(p, m),
then p?@®™)[A, B, B] < p?®»™)+%A < p°A = 0 and the proposition is proved.
Thus, we may assume e — 2t to be large enough. We define the new operation
for any z € A, y € B by putting [z,y] to be any of the p‘th roots of [z,y]
in the additive group of A, and [z1, 2] = 0 if either 21,22 € A or 2,22 € B.
Then L = (A/p°~?*A) @ B becomes a Lie ring with respect to the old addition
and this new multiplication, and ¢ becomes an automorphism of the new Lie
ring L, with at most p™ fixed points. Note that (14.4) holds for L too. By
Remark 7.20,

o1 (P EHIH2L) < pmp 1 (PL) < p™ia (CL(9)) = 1a (P™ClL(g)) =0,
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for some (p,m) bounded number v. Replacing L by the subring pl™/(P+1l+2[,
of (p, m)-bounded index, we may assume that v,41(L) = 0 from the outset.
Since p*A < [A, B] = p'[A, B] (where [A, B] is the additive subgroup of A
generated by the [z,y]), in the homocyclic additive group of A we obtain
p*~tA < [A, B], unless b = e. Then also p*~*A < [4, B], including the case
b = e, whence

pPC 4 <y, (L) = 0. (14.27)

Lemma 14.28. We have
(a) e—2t <p(b—1t);
(b) p~%[A,B,B] =0.

Proof. (a) This follows from (14.27) since the exponent of the additive
group of A is p°~2t. (b) We have p*~%[A, B, B] < p*~2t+24 = (. a

As in the proof of Theorem 14.3, we shall effectively try to decrease the
difference b — ¢. Recall that H N p*M denotes the p*-slice of H in M, the
elementary abelian section (HNp®M +p*t! M)/p**t' M of an additive group M.

We consider the inequalities

(4, B]n p'A| < [[A, B] N pH1A] < ...

... < |[4,BInp1A| < [[A, BInpPA| = [pA/p"*" Al (14.29)

These inequalities hold since [A, B] is invariant under the mapping z — pz
which induces isomorphisms of the factors p* A/p**1A, k =t¢, t +1,... ,b; the
last strict inequality and equality hold by the definition of . The number of
strict inequalities in this chain is at most pm, since the rank of the additive
group of A is at most pm. Let

A, BInphAl =...= [[4B]n 14|

be the last “long” segment of equalities of length b, — b; —1 > 2 (that is, with
by — by > 3 equal successive orders). Then ([4, B]Np* A)/([4,B]Np>A)is a
homocyclic group of exponent > p®, while b— b, is (p, m)-bounded, since there
are at most pm gaps, each < 2, between b; and b in (14.29). If there are no
segments of equalities of length > 2 in (14.29), then b — ¢ < pm + 1, whence
e — 2t is (p,m)-bounded by Lemma 14.28(a), contrary to our assumption.

Lemma 14.30. |C([A,B]+pb2A)/pb2A((p)| < |CA((P)|

Proof. Repeat the proof of Lemma 14.13, replacing L by A and [L, L]
by [A, B]. o
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Now ¢ has less than p™ fixed points on the Lie ring (([A, B]+p>2 A)/p*2 A)®

B (with naturally defined multiplication and the action of ¢). By the induction

hypothesis, there are a (p,m)-bounded number r = r(p,m) and an (m — 1)-

bounded number g = g(m — 1) such that p"[[A4, B], B,...,B] < p» A, whence
(A

g

pt%[A B,... ,B] < p’A. (14.31)
N,/

g+1
Proposition 14.24 will easily follow from (14.31) and the following proposition.

Proposition 14.32. Let L = A® B be a Lie ring whose additive group
is a finite p-group, with abelian ideal A, whose additive group is homocyclic
of ezponent p°, and abelian subring B. Let b = b(A) be the minimal and
t = t(A) the mazimal positive integer such that p*A < [A, B] < ptA. Suppose
that L admits an automorphism ¢ of order p satisfying (14.4) with ezactly
p™ fized points, such that both A and B are p-invariant. Then, for some m-
bounded number d = d(m) and a (p,m)-bounded number € = (p, m), we have
pi®-t+[A B, B] = 0.

First, we show that Proposition 14.24 follows from Proposition 1{.32. For
r and ¢ as in (14.31) and for d and € as in Proposition 14.32, we have

pd(r+b_bz)+s[A, B,... ,B] < pdb+5[A,B,B] =0.

d(g+1)+2

This is the required result, since d(r + b — b;) + € is (p,m)-bounded, and
g(m) = d(m)(g(m — 1) + 1) + 2 is m-bounded. m]

Proof of Proposition 14.82. We may assume e > 2, for otherwise [A, B, B]
< p**A = 0 and the result holds with d = ¢ = 0. As above, we define the
Lie ring L on the additive group of (4/p*~2*A) @ B with respect to the new
multiplication [,]. The same argument as above shows that we may assume
that (14.27) holds, and hence Lemma 14.28 holds too.

We proceed by induction on b — ¢t. When b — ¢ is (p,m)-bounded, the
result follows by Lemma 14.28: then e — 2t is (p,m)-bounded by 14.28(a), and
p°"%[A, B, B] = 0 by 14.28(b), so that we can take ¢ = e — 2t and d = 0.
Hence we may assume b — ¢ to be large enough. The above calculation also
shows that e — 2¢ may be assumed to be large enough too.

It is sufficient to find a ¢-invariant and B-invariant section S of A which is
“m-close to A” and has difference (S5) —¢(S) smaller than b—¢ = b(A) —¢(A).

More precisely, suppose that we found a ¢-invariant and B-invariant section
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S of A such that, for some m-bounded numbers d; = d;(m) and d; = dz(m),

e phAJ/I < S < A/I, where I is a g-invariant ideal of L )
contained in A such that p%2I = 0;

e the additive group of S is homocyclic; (14.33)

e b(S) —t(S) < b—t, where b(S5) and £(S) are, respectively,
the minimal and the maximal integer such that p*%)§ <
[S, B] < pt9 8.

P,

By the induction hypothesis applied to 5@ B, we shall have p¢¢-t-1+¢[S B, B]
= 0 for some m-bounded d = d(m) and (p,m)-bounded ¢ = e(p,m). This
means that p®-t-V+¢[p1 4 B, B] < I. Then

pd(b—t)+5+d1+d2—d[A’ B’ B] — pd2+d(b—t—1)+6[pd1A’B’B] — 0' (14'34)

We can enlarge d, if necessary, to ensure that d; + do < d. Since d; and d,
are m-bounded numbers, this enlargement has to be done only once, and the
enlarged value of d remains m-bounded. Then €+ d; + d2 — d < € and (14.34)
implies that p?®-9+¢[4, B, B] = 0, as required.

We shall approach a section S satisfying (14.33) in an m-bounded number
of steps, at each step constructing a ¢-invariant section 5; which is m-close
to Si_1, starting from So = A (hence all S; will be m-close to A). Let b
and ¢, denote, respectively, the minimal and the maximal integer such that
p** Sy < [S,B] < p'S. At each step, we shall ensure that either the difference
b; — t; becomes smaller, in which case S = S5, is the required section and
the process terminates, or this difference remains equal to b — ¢t and for some
chosen m-bounded number 6§ = é; (which we shall specify later) the rank of
the slice [S;, B] N p%+4S; becomes at least p — 1 less than the rank of the slice
[Si-1, B] N pti—1+26425, . At every step, we shall have #; + 26 + 2 < b;, since
the original difference b — ¢ is large enough, and the parameters b; and ;
change m-boundedly at every step, since 5; is m-close to A. We summarize
the properties of constructing S; from S;_, as follows:

e S; is a p-invariant and B-invariant section of $;_; with ho- ]
mocyclic additive group;

e for some m-bounded numbers d;;, d;3, we have
p1 81/ < S < Si-1/Li, where I; is a ¢-invariant and
B-invariant ideal of S;_; such that p%zI; = 0; (14.35)

e either b, —t; <b—t, orb;—t; =b—t and

r([Si, BN ptts8;) < r([Sio1, B] N ph—1 425428, ) — (p—1)

for some m-bounded number é = §;.
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Suppose that this construction can be implemented sufficiently many times.
Then, starting with sufficiently large 8, about 3-22™, after at most 2m steps
we must arrive at a situation where the difference b; — ¢; becomes smaller.
Otherwise, if the difference b; — ¢; remains constantly equal to b — ¢, there will
be 2m subtractions of p — 1 from the rank, which is impossible, since the rank
of A is at most pm. More precisely, we would then have

r([SZMa B] N pt2m+152m)

S r([SZm—laB] nptzm_l-*-‘lSZm—l) - (P - ]-) S s

IN

r([SZm—sa B] n ptzm_’+3'zs_252m—3) - S(P - 1) <

< r([A BInp=7"24) - 2m(p—1), (14.36)

where $, is constructed from A with § = 3-22™~! — 2, then S, is constructed

from S with § = 3222 —2, and so on, up to Szm, under the assumption that

the difference b; —¢; remains constantly equal to b—¢. (We used the elementary

formula 2(...(2(24+2)+2)+---) +2 = 3-2° — 2 above.) But the right-hand
N’

side of (14.363) is negative, sinsce the rank is at most prn, a contradiction. Thus,
there must be the required decrease of the difference b;, — t;; < b —t for some
io < 2m, which means that S = 3;; is the required section satisfying (14.33),
and Proposition 14.32 is proved.

Each S; has the same properties as A, and the next section S;;; is con-
structed based on S; only. Thus, we need to describe only one step from S;
to S;41 satisfying the conditions of the preceding paragraph, and moreover, we
may consider only the step from A to S;. The major step in constructing S,
is the following lemma. Recall that V, denotes the Z (¢)-submodule generated
by a (see Lemma 14.6).

Lemma 14.37. Suppose that, for some m-bounded number § € N, an
element a € A\ pA is such that p**+1V, C [A, B] and [V, B] C p't5t2A. Put
Ay =V, +p**2A. Then

(a) A is a p-invariant ideal of L such that pPA, < [A,, B) < ptAy, that
is, t(A1) > t and b(Ly) < b, so that b(A,) —t(A;) < b—1t;
(b) if t{A) =t, then

r([A, B]Npte Ay) < r([A, B]Nptt2+24) — (p—1).

Proof. (a) Since [V,, B] < ptt%+24 < A,, the sum A, = V, + p**?A is a
p-invariant ideal of L. We have

[Ala B] = [‘/a’ B] + p6+2 [A’ B] < pt+6+2A < ptAl’ (1438)
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so that ¢(A;) > t, as required. To estimate b(A,) we again express everything
in terms of A rather than Aj; in particular, p? A, = p*V, + p*+¥t2A. We have

[A1, B] > p**%[A, B] > pto*2A4.

It remains to show that p’+2[A, B] > p*V,. By the hypothesis, pt*5+'V, <
[A, B]. Since b—t is large enough and § is m-bounded, we have b > ¢ +26 + 3,
whence

Pqu S pt+26+3‘/u S p6+2[A, B]

(b) Let now t(A,) = t. To calculate the rank of the slice in A; in question,
we express everything in terms of A. As in (14.38), we have [4,, B]Npt 4, <
[A1, B] < [A, Bl N ptt¥+2 A. Hence the slice in A, in question,

[Ala B] n pt+6A1
— ([Al, B] npt+6A1 +pt+6+1Vu +pt+26+3A) /(pt+5+1vu +pt+26+3A),
is a subgroup of the factor-group
([A,B] n pt+6+2A) + pt+6+1Vu + pt+26+3A) /(pt+5+1vu + pt+26+3A)_
This factor-group is isomorphic to the factor-group of
Q= ([A, B] n pt+6+2A + pt+26+3A) /pt+26+3A

by R, the image of ([4, B]Npt5t2A 4 ptt26+34) N pt+é+1Y, in A/pHt25+3A4. We
claim that

o the rank of Q is equal to the rank of the p!+%+2.slice of [4, B] in A, the
other slice in question;

e R contains a direct summand of @ of rank p — 1

(then this summand is “cut off” in Q/R, which will finish the proof). Indeed,
the rank of @ is equal to the rank of [A, B] N ptt26+24  since in the homo-
cyclic section p't5+2A/pt*t25+34 the subgroup ptt%+2A/ptt%+34 contains all
elements of order p, so that

[A, B]N ptt25+24 = (([A,B] Nptto+24 4 pt+26+3A)/pt+26+3A) = Q).
Now we consider the second group R. We have
([A,B] N pt+6+2A 4+ pt+26+3A) N pt+6+1Vu Z [A,B] N pt+6+2A ﬂpt+6+1Vu.
By the choice of a and by the properties of V, (Lemma 14.6), we have

[4, B] > ptt**1V, > pto+2 ANV,
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and p*t®*24 NV, is a homocyclic group of rank p — 1. Hence
[A,B] npt+6+2A npt+6+1Vu — pt+6+2An V., < [A, B]

and the image of p**2A NV, in A/p**+3A4 is a homocyclic subgroup of
exponent p® and of rank p — 1 contained in

Q= ([4,B]n pt+6+2A + pt+26+3A) /Pt+25+3A ‘

Since @ also has exponent p’, the image of p"**+24 NV, in A/p't3+34 is
a direct summand of Q by Lemma 1.6(a). This image is contained in R and
hence r(Q/R) < rQ—(p—1). Since the p***-slice of [A;, B] in A, is a subgroup
of @Q/R, the result follows. O

Back in the proof of Proposition 14.32, the required section S is defined
to be A;/p°~%~2A;, where, recall, p® is the exponent of the additive group
of A. In fact, p*~%~2A4; = p*~%~2V,; this is an ideal of L, since [p*~*~2V,, B] <
p°~8-2+t+6+2 4 — 0. The ranks of the ambient slices for $; coincide with those
for Ay and ¢(S1) = t(A,) since e — 2¢ is large enough. (The parameter 5(S;)
can become only smaller, in which case (51) —¢(S51) < b—t and S = 5 is the
required section, satisfying (14.33).)

To finish the proof of Propositions 14.32 and 14.24, it remains to show that
we can always find an element a satisfying the hypothesis of Lemma 14.37 for
a given m-bounded §. Note that p*V, C [A, B]if and only if p*a € [A, B], and
[Va, B] C p*A if and only if [a, B] C p*A. Suppose that, for an m-bounded 6,
no a exists satisfying the condition of Lemma 14.37. Choose a; € A\ pA such
that p*t®*la, € [A, B], which is possible, since e — ¢ is large enough. Since
[a1, B] € p't5t2 A by our assumption, there is a; € A\ pA such that p**¥+1q, €
[a1, B], and so on. Let [u,%note the additive subgroup generated by the
elements [u, ], | € L; then [u, L] = [4, B] in the Lie ring L = (A/p*%A) @ B
(with new Lie products [,]). Since e —t > b— ¢ is large enough, we have the
following in the homocyclic additive group of L of exponent p*:

p'*¥*1a, € [A, B] = p'[A,B] = p**'a; € [A, B];
P+, € (a1, B] = p'lar, Bl = p**laz € [a1, B]
= p*®*g, e [p**'ay, B] < [[4, Bl, B},
and so on. In the Lie ring L, after p steps, we obtain by (14.27)
PG, €y (L) = 0.

Since a, € A\ pA, the order of @, in the additive group of Lis p*~? and hence
we must have e — 2¢t < p(6 + 1). This, however, contradicts our assumption
that e — 2t is large enough. g



188 14. Automorphism of order p with p™ fixed points

Corollary 14.39. Let L be a soluble Lie ring of derived length 2 whose
additive group is a finite p-group. Suppose that L admits an automorphism ¢
of order p with ezactly p* fized points. Then v4()(p’®*)L) = 0 for a (p,s)-
bounded number f(p,s) and an s-bounded number g(s).

Proof. Put A= [L,L]) and B = L/[L, L]; then we can form the semidirect
sum A@B. To wit, the Lie ring operations within either A or B are the same as
in [L, L] and L/[L, L] respectively, and for a € A, b € B, by definition, [a, ] =
[a,y], where b = y+[L, L] is the image of y € L in B. Both A and B are ¢-invar-
iant and the number of fixed points of ¢ on B is at most p° by Lemma 2.12.
Thus, the Lie ring A @ B satisfies the hypothesis of Proposition 14.24 with
m < 2s. Hence there are a (p,s)-bounded number v = u(p,s) and an s-
bounded number v = v(s) such that

p“[A, B,... ,B]=0.

v

By the definition of the Lie ring A & B, this implies that

L/ [y < perip L)L ... L] =p*[A, B,... ,B]=0.
7U+1(p )_P[[ ) ]’ ) ) ] P[ ) ) ) ]

v v

a

Proof of Theorem 14.2. Let L be a Lie ring whose additive group is a
finite p-group, and let ¢ be an automorphism of L of order p with exactly p™
fixed points. By Theorem 14.3 we may assume that L is soluble of m-bounded
derived length. Hence the result will follow from the following proposition.

Proposition 14.40. Suppose that L is a soluble Lie ring of derived length d
whose additive group is a finite p-group. If L admits an automorphism ¢ of
order p with ezactly p™ fized points, then L has a nilpotent ideal of (m,d)-
bounded class which has (p, m,d)-bounded index in the additive group of L.

Proof. By Theorem 5.27, if a Lie ring M has nilpotent derived subring
[M, M| of class c and the factor-ring M/M(?) by the second derived subring is
nilpotent of class k, then M itself is nilpotent of (k,c)-bounded class. Using
induction on the derived length d, we shall find the required ideal of L in
the form p"®™ L. By the induction hypothesis v, (p*[L,L]) = 0 for some
u = u(p,m,d — 1) and v = (m,d — 1). By Corollary 14.39 applied to L/L(?),
we have v,(p'L) < L for some g = g(m) and f = f(p,m). We put w =
max {[u/2] + 1, f}, which is a (p,m)-bounded integer, and put M = p*L.
Then, on the one hand,



Exercises 14 189

7g+4(M) = 7g+4(PwL)

(L@ p*L, p*L, p*L, p*L)

IN

S p4'wL(2)
= (p*L)® = M®,

On the other hand, +,([M, M]) = ~,(p**[L, L]) < % (p*[L,L]) = 0. By The-
orem 5.27, M is nilpotent of class bounded in terms of v and g, that is, of
m-bounded class. Thus, M is the required nilpotent ideal of (m, d)-bounded
class with (p, m, d)-bounded index in the additive group of L. O

Remark 14.41. One can show that (14.4) implies that the rank of A4 is
at most m(p — 1), so that, in fact, m steps would suffice in the process of
constructing the 5; described, starting with § =3 - 2™ — 2.

Exercises 14

1. Prove that (14.4) implies that the rank of L is at most m(p — 1), where
ICL(e)l = p™

2. Produce explicit upper bounds for the index, the derived length and the
nilpotency class of a subgroup (ideal) in Theorems 14.1, 14.2, 14.3.

3. Follow the instructions on pages 174-175 to complete the proof of Theo-
rem 14.3 in the case of m = 2.

4. Extend the argument of the preceding exercise for m = 2 to the case of m =

3.
5. Expand the proofs of Lemmas 14.26 and 14.30.
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Subring 14, 58
Subsystem of an algebraic system 17
Sylow p-subgroup 4
Theorems 4
Symmetric group 1
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Tensor product 15

Term 19

7-Thread 45

Three Subgroup Lemma 36
Torsion-free group 4
o-Torsion-free group 121
Transitive 11

Trivial subgroup 1

Underlying associative word 67

Uniformly powerful p-group 135

Upper central series of a group 38
of a Lie ring 72

Value of a commutator 9, 59
of a word 19

Subject index

Variety of algebraic systems 19
of groups 19
of groups with operators 20
of rings 19
Varietal criterion of solubility 45
Verbal subsystem 21
subgroup 22

Weight of a commutator 9

Weight of a commutator in a given
element 9

Witt’s identity 36

U-Words 21

Words of given signature 19



List of symbols

1, 1, 1
A 58
14 2
VA 109
VA 121
Ak 44, 64
(A) 2
+{A) 14, 17, 58
ia({A) 14, 58
[41, Azy. oo s Af] 10
|A: B 2
A<B 1,13, 17, 57
A B 3
Ax B 3
A®xk B 15
(4, B] 9, 60
A/B 2, 14
(AB) 2
AdB 2, 13, 58
AXNB 26
AnpB 171
la| 3
aP 12
[ar,az,... ,a] 9
a 2
[a,b] 9, 59
[a,b] 162
a = b(mod N) 7

ad(a) 61
AutG 8
C 1
Ce(M) 2
Crie1G: 3, 14, 19
§ 70
8u(Z1y... ,Zgn) 42
Dy 27
DriesG; 3, 14, 19
e 104
F, 5
GL(V) 1
GL,(k) 1
Gy 118
G" 3
G® 42, 64
G’ 10
7(G) 37, 62
h(p) 87
Homgz A 14
H(z,y) 105
hi(z,y), ha(z,y) 115
k(s) 83
Ker¢ 7
Lg 118
L(G) 74
lim 95
log (1+ a) 104
[L, L] 60
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N,
Ng(M)
nta (k)
r(c!)

.

rU
Sum, S,
Ta(k)

39, 63

82
122

32
121

176

34

List of symbols

)
UTa(k)
[u]
(G)
Z

ZG
Z(G)
G(G)
®(P)

Q(P)

34
67
21

13

38, 72

53
32, 78



